
ON SCHAUDER ESTIMATES FOR A CLASS OF NONLOCAL

FULLY NONLINEAR PARABOLIC EQUATIONS

HONGJIE DONG AND HONG ZHANG

Abstract. We obtain Schauder estimates for a class of concave fully nonlinear

nonlocal parabolic equations of order σ ∈ (0, 2) with rough and non-symmetric
kernels. As a application, we prove that the solution to a translation invariant

equation with merely bounded data is Cσ in x variable and Λ1 in t variable,

where Λ1 is the Zygmund space.

1. introduction

This paper is devoted to the study of Schauder estimates for a class of concave
fully nonlinear nonlocal parabolic equations. There is a vast literature on Schauder
estimates for classical elliptic and parabolic equations, for instance, see [13, 18, 4].
Since the work by Caffarelli and Silvestre [1, 3, 2], nonlocal equations, which natu-
rally arise from models in physics, engineering, and finance that involve long range
interactions (for instance, see [9]), attract an increasing level of interest recently.
An example of nonlocal operators, which is associated with pure jump processes
(see, for instance, [19]), is the following

Lau =

∫
Rd

(
u(t, x+ y)− u(t, x)− yTDu(t, x)

)
Ka(t, x, y) dy for σ ∈ (1, 2),

Lau =

∫
Rd

(
u(t, x+ y)− u(t, x)− yTDu(t, x)χB1

)
Ka(t, x, y) dy for σ = 1

with

∫
Sr

yKa(t, x, y) ds = 0 ∀ r > 0, (1.1)

Lau =

∫
Rd

(
u(t, x+ y)− u(t, x)

)
Ka(t, x, y) dy for σ ∈ (0, 1),

where

Ka ∈ L0 :=
{
K :

λ

|y|d+σ
≤ K(t, x, y) ≤ Λ

|y|d+σ

}
for some ellipticity constants 0 < λ ≤ Λ, with no regularity assumption imposed
with respect to the y variable. This type of nonlocal operator was first considered
by Komatsu [16], Mikulevičius and Pragarauskas [19, 20], and later by Dong and
Kim [11, 10], and Schwab and Silvestre [22], to name a few.

The fully nonlinear nonlocal parabolic equation that we are interested in is of
the form

ut = inf
a∈A

(Lau+ fa) in (−1, 0)×B1, (1.2)

where Ka ∈ L0 for a ∈ A and A is an index set. For fully nonlinear second-order
equations with fa ≡ 0, the celebrated C2,α estimate was established independently
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by Evans [12] and Krylov [17] in early nineteen-eighties. Nonhomogeneous second-
order equations were considered a bit later by Safonov [21]. Recently, Caffarelli
and Silvestre [2] investigated the nonlocal version of Evans-Krylov theorem with
translation invariant and symmetric kernels, i.e., Ka(x, y) = Ka(y) = Ka(−y),
satisfying additional regularity assumptions

[Ka]C2(Rd\Bρ) ≤ Λ(2− σ)ρ−d−σ−2. (1.3)

More recently, their result was extended to nonhomogeneous fully nonlinear elliptic
equations by Jin and Xiong [14] by using a recursive Evans-Krylov theorem. At al-
most the same time, Serra [23] removed the regularity assumption (1.3) and proved
the Evans-Krylov theorem and Schauder estimates with symmetric kernels. His
proof relies on a Liouville type theorem and a blow-up analysis. In this paper, we
do not assume that the kernels are symmetric, which is certainly more general than
the kernels considered in [2, 14, 23]. Specifically, when the kernels are symmetric,
(1.1) is satisfied automatically, and

Lau =
1

2

∫
Rd

(
u(x+ y) + u(x− y)− 2u(x)

)
Ka dy,

the right-hand side of which is the operator considered in [2, 14, 23].
For equations with non-symmetric kernels, Dong and Kim [10, 11] proved Lp and

Schauder estimates for linear elliptic equations. Chang-Lara and Dávila [7, 8] con-
sidered nonlocal parabolic equations with non-symmetric kernels and critical drift,
and proved the corresponding Cα and C1,α estimate. Recently in [5], they proved a
version of the Evan-Krylov theorem for concave nonlocal parabolic equations with
critical drift, where they assumed the kernels to be non-symmetric but translation
invariant and smooth (1.3). We also mention that Schauder estimates for linear
nonlocal parabolic equations were studied in [15, 20].

The objective of this paper is twofold. First we extend the previous results in
[23, 5, 14, 15] to include concave nonlocal parabolic equations with non-symmetric
rough kernels. More specifically, for any small α, if fa and Ka(t, x, y) are Cα in
x and Cα/σ in t, then we have the following C1+α/σ,σ+α a priori estimate of any
smooth solution u to (1.2).

Theorem 1.1. Let σ ∈ (0, 2), 0 < λ ≤ Λ < ∞, and A be an index set. There is
a constant α̂ ∈ (0, 1) depending on d, σ, λ, and Λ so that the following holds. Let
α ∈ (0, α̂) such that σ + α is not an integer. Assume Ka ∈ L0 and satisfies (1.1)
when σ = 1, and∣∣Ka(t, x, y)−Ka(t′, x′, y)

∣∣ ≤ A(|x− x′|α + |t− t′|α/σ
) Λ

|y|d+σ
, (1.4)

where A ≥ 0 is a constant. Suppose u ∈ C1+α/σ,σ+α(Q1) ∩Cα/σ,α((−1, 0)×Rd) is
a solution of

ut = inf
a∈A

(Lau+ fa) in Q1, (1.5)

where fa ∈ Cα/σ,α(Q1) satisfying

C0 := sup
a∈A

[fa]α/σ,α;Q1
<∞, sup

(t,x)∈Q1

∣∣∣ inf
a∈A

fa(t, x)
∣∣∣ <∞.

Then,
[u]1+α/σ,α+σ;Q1/2

≤ C‖u‖α/σ,α;(−1,0)×Rd + CC0, (1.6)

where C > 0 is a constant depending only on d, λ,Λ, α,A, and σ.
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Note that ‖ · ‖α/σ,α;Ω is the Hölder norm of order α/σ in t and α in x with
underlying domain Ω. We also used Qr to denote the parabolic cylinder with
radius r centered at the origin. For precise definitions, see Section 2. As pointed
out in [23], the Cα/σ,α Hölder norm of u on the right-hand side of (1.6) is necessary
and cannot be replaced by the L∞ norm or any lower-order Hölder norm of u.

Roughly speaking, the proof of Theorem 1.1 can be divided into three steps.
First we prove a Liouville type theorem for solutions in (−∞, 0) × Rd. For the
classical PDEs, we generally apply interpolation and iteration to obtain C1,α and
C2,α estimates. The nature of nonlocal operator is quite different from the classical
operator. One notable feature is that the boundary data is prescribed on the
complement of the domain where the equation is satisfied, which makes it difficult to
implement interpolation and iteration to deal with the nonlocal operator. However,
if we assume that (1.2) is satisfied in (−∞, 0)× Rd, then we do not need to worry
about boundary data any more, which is the advantage of considering an equation
satisfied in the whole space. Second, we prove the a priori estimate for equations
with translation invariant kernels by combining the Liouville theorem and a blow-
up analysis. Particularly in this step, the extension from symmetric kernels to
non-symmetric kernels is non-trivial. A key idea in the classical Evans-Krylov
theorem for F (D2u) = 0 is that, since the function F is concave, any second
directional derivative D2

eeu is a subsolution. It is relatively easy to adapt this idea
to the nonlocal equation with symmetric kernels, because the centered second-order
difference appears in the definition of the operator. For nonsymmetric kernels, some
new ideas are required to obtain a similar subsolution as in the symmetric case.
Moreover, the dependence of the t variable also makes the proof more involved.
Finally, we implement a more or less standard perturbation argument to treat the
general case.

The second objective of this paper is to consider the end point situation when
α = 0. For second-order elliptic equations, even the Poisson equation ∆u = f ,
when f is merely bounded, it is well known that u may fail to be C1,1. However,
this is not the case for nonlocal equations. In the case when σ 6= 1 and the kernels
are independent of t and x, we prove a priori Cσ estimate in the x variable and
Λ1 estimate in the t variable when fa is merely bounded. Here Λ1 is the Zygmund
space. To our best knowledge, such result is new even for nonlocal elliptic equations
with symmetric kernels.

Theorem 1.2. Let σ 6= 1. Assume that u is Cσ in x, Λ1 in t and satisfies (1.2)
in (−∞, 0)×Rd with Ka independent of t and x. When σ ∈ (1, 2), we also assume
that Du is C(σ−1)/σ in t. Then there exists a constant C depending on d, λ,Λ, and
σ such that for σ > 1,

[u]tΛ1 + [u]∗σ + [Du]tσ−1
σ

≤ C sup
a
‖fa‖L∞ ;

for σ < 1,
[u]tΛ1 + [u]∗σ ≤ C sup

a
‖fa‖L∞ ,

where all the norms are taken in Rd+1
0 := (−∞, 0)× Rd.

Here [ · ]∗, [ · ]tα, and [ · ]tΛ1 are the Hölder semi-norms in x, t, and Zygmund
semi-norm in t, respectively. See the precise definitions in Section 2.

The proof of Theorem 1.2 is based on a perturbation type argument using Cam-
panato’s approach. We first refine the estimate in Theorem 1.1 when the operator is
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translation invariant. In particular, we replace ‖u‖α/σ,α;(−1,0)×Rd on the right-hand
side of (1.6) by

‖u‖α/σ,α;Q1
+

∞∑
j=1

2−jσ[u]α/σ,α;(−1,0)×(B2j \B2j−1 ). (1.7)

The advantage of the replacement will be explained below. Another important
ingredient in the proof is the fact that for σ > 1

[u]t
Λ1(Rd+1

0 )
+ [u]∗

σ;Rd+1
0

+ [Du]tσ−1
σ ;Rd+1

0

≤ C sup
r>0

sup
(t,x)∈Rd+1

0

E[u;Qr(t, x)], (1.8)

and for σ < 1,

[u]t
Λ1(Rd+1

0 )
+ [u]∗

σ;Rd+1
0

≤ C sup
r>0

sup
(t,x)∈Rd+1

0

E[u;Qr(t, x)], (1.9)

where

E[u;Qr(t, x)] := inf
p∈P

r−σ‖u− p‖L∞(Qr(t,x)),

P is the set of polynomial of degree [σ] (i.e., the integer part of σ) in x and linear
in t, and Qr(t, x) is the parabolic cylinder with center (t, x); see (2.1). Therefore,
instead of directly estimating

[u]tΛ1 + [u]∗σ + [Du]tσ−1
σ

(or [u]tΛ1 + [u]∗σ),

we estimate E[u;Qr(t, x)] for any fixed r and (t, x). More specifically, without loss
of generality, we set (t, x) = (0, 0) and let vK solve the homogeneous equation{

∂tvK = infa∈A LavK in Q2R

vK = gK := max{−K,min{u− p,K}} in (−(2R)σ, 0)×Bc2R
,

where K is a large constant, p is a carefully chosen linear function, and R > 2r
is a constant to be determined. Now we apply Theorem 1.1 to vK and control
[vK ]1+α/σ,α+σ;QR/2 by using scaling argument and replacing ‖vK‖α/σ,α by (1.7). It

is easily seen that in each cylindrical domain (−Rσ, 0)×(B2jR\B2j−1R), the Hölder
norm of gK is bounded and independent of K, but globally it depends on K and
goes to infinity as K →∞. This is also the advantage of decomposing the domain
into annuli. We then set qK to be the first-order Taylor expansion of vK and we
estimate

‖u− p− qK‖L∞(Qr) ≤ ‖u− p− vK‖L∞(Qr) + ‖vK − qK‖L∞(Qr),

where the first term is bounded by CRσ due to the Aleksandrov-Bakelman-Pucci
estimate and second term is controlled by [vK ]1+α/σ,α+σ;Qr . Finally, we are able to
obtain

r−σ‖u− p− qK‖L∞(Qr) ≤ C(r/R)α
(
[u]∗σ + [u]tΛ1 + [Du]tσ−1

σ

)
+ C(R/r)σ‖f‖L∞ .

By setting R = Mr, using (1.8) (or (1.9)), and taking M sufficiently large, the
terms involving u on the right-hand side above are absorbed in the left-hand side.

It seems that new ideas are needed to deal with the case when σ = 1, because
in this case we expect that u ∈ Λ1 in x and it is unclear to us how to choose p in
order to get a good estimate of u− p in (−Rσ, 0)× (B2jR \B2j−1R).

We localize Theorem 1.2 to obtain the following corollary.
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Corollary 1.3. Let σ 6= 1. Assume that u is Cσ(Q1) in x, Λ1(Q1) in t, and
satisfies

ut = inf
a∈A

(Lau+ fa) in Q1.

When σ ∈ (1, 2), we also assume that Du is C(σ−1)/σ(Q1) in t. Then for σ > 1,

[u]∗σ;Q1/2
+ [u]tΛ1(Q1/2) + [Du]σ−1

σ ;Q1/2
≤ C

(
sup
a∈A
‖fa‖L∞(Q1) + ‖u‖L∞((−1,0)×Rd)

)
;

and for σ < 1,

[u]∗σ;Q1/2
+ [u]tΛ1(Q1/2) ≤ C

(
sup
a∈A
‖fa‖L∞(Q1) + ‖u‖L∞((−1,0)×Rd)

)
.

We remark that by viewing solutions to elliptic equations as steady state solu-
tions to parabolic equations, from Theorems 1.1, 1.2, and Corollary 1.3, we obtain
the corresponding results for nonlocal elliptic equations with nonsymmetric and
rough kernels.

The organization of this paper is as follows. In the next section, we introduce
some notation and preliminary results that are necessary in the proof of our main
results. We prove the Liouville theorem in Section 3 and Theorem 1.1 in Section 4.
In Section 5, we apply Theorem 1.1 to prove Theorem 1.2.

2. Notation and preliminary results

In this section, we introduce some notation which will be used throughout this
paper and some preliminary results which are useful in our proof. We use Br(x) to
denote the Euclidean ball in Rd with center x and radius r. The parabolic cylinder
Qr(t, x) is defined as follows

Qr(t, x) = (t− rσ, t)×Br(x). (2.1)

We simply use Qr to denote Qr(0, 0) and Rd+1
0 := (−∞, 0) × Rd. Let Ω ⊂ Rd+1

and we define the Hölder semi-norm as follows: for any α, β ∈ (0, 1], and function
f ,

[f ]α,β;Ω = sup
{ |f(t, x)− f(s, y)|

max(|x− y|α, |t− s|β)
: (t, x), (s, y) ∈ Ω, (t, x) 6= (s, y)

}
.

We denote

‖f‖α,β;Ω = ‖f‖L∞(Ω) + [f ]α,β;Ω.

For any nonnegative integers m and n,

‖f‖m+α,n+β;Ω = ‖f‖L∞(Ω) + [Dmf ]α,β;Ω + [∂nt f ]α,β;Ω.

The spaces corresponding to ‖ · ‖α,β;Ω and ‖ · ‖m+α,n+β;Ω are denoted by Cα,β(Ω)
and Cm+α,n+β(Ω), respectively. Next, for any α, β ∈ (0, 1], we define the Hölder
semi-norms only with respect to x or t

[f ]∗α;Ω = sup
{ |f(t, x)− f(t, y)|

|x− y|α
: (t, x), (t, y) ∈ Ω, x 6= y

}
,

[f ]tβ;Ω = sup
{ |f(t, x)− f(s, x)|

|t− s|β
: (t, x), (s, x) ∈ Ω, t 6= s

}
.

When σ = k + α with some integer k ≥ 1,

[f ]∗σ;Ω = [Dkf ]∗α;Ω.
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For α ∈ (0, 2), we define the Lipschitz-Zygmund norm

‖u‖Λα := ‖u‖L∞ + sup
|h|>0

|h|−α‖u(·+ h) + u(· − h)− 2u(·)‖L∞ .

We say u ∈ Λα if ‖u‖Λα <∞.
For simplicity of notation, we denote

δu(t, x, y) =


u(t, x+ y)− u(t, x)− yTDu(t, x) for σ ∈ (1, 2),

u(t, x+ y)− u(t, x)− yTDu(t, x)χB1
for σ = 1,

u(t, x+ y)− u(t, x) for σ ∈ (0, 1).

The Pucci extremal operator is defined as follows: for σ 6= 1

M+u(t, x) =

∫
Rd

(
Λδu(t, x, y)+ − λδu(t, x, y)−

) 2− σ
|y|d+σ

dy,

M−u(t, x) =

∫
Rd

(
λδu(t, x, y)+ − Λδu(t, x, y)−

) 2− σ
|y|d+σ

dy.

When σ = 1, the extremal operator cannot be written out explicitly, due to the
condition (1.1). Nevertheless, we do not use exact representation directly and define
the extremal operator by

M+u = sup
a
Lau and M−u = inf

a
Lau,

where the infimum (or supremum) is taken with respect to all La’s with kernels Ka

satisfying (1.1).
We recall the weak Harnack inequality of [22, Theorem 6.1].

Proposition 2.1. Assume that 0 < σ0 ≤ σ < 2 and C > 0 is a constant. Let u be
a function such that

ut −M−u ≥ −C in Q1, u ≥ 0 in (−1, 0)× Rd.

Then there are constants C1 > 0 and ε1 ∈ (0, 1) depending only on σ0, λ,Λ, and d,
such that (∫

(−1,−2−σ)×B1/4

uε1 dx dt
)1/ε1

≤ C1

(
inf
Q1/4

u+ C
)
.

From Proposition 2.1, we obtain the following corollary for σ ∈ (1, 2), the proof
of which is provided in the appendix.

Corollary 2.2. Let σ ∈ (1, 2), C > 0 be a constant, and u satisfy

ut −M−u ≥ −C in Q2r, u ≥ 0 in (−(2r)σ, 0)× Rd.

Let ε1 be the constant in Proposition 2.1. For any r, δ ∈ (0, 1), denote Q̃δr =
(−rσ,−(δr)σ)×Br. Then we have

r−(d+σ)/ε1
(∫

Q̃δr

uε1 dx dt
)1/ε1

≤ C2

(
inf
Qδr/2

u+ Crσ
)
,

where C2 > 0 is a constant depending only on δ, σ0, λ,Λ, and d.

We state the following local boundedness estimate from [6, Corollary 6.2].
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Proposition 2.3. Let Ω ⊂ Rd, t1 < t2, and u satisfy

ut −M+u ≤ 0 in (t1, t2]× Ω.

Then for any (t′1, t2]× Ω′ ⊂⊂ (t1, t2]× Ω,

sup
Ω′×(t′1,t2]

u+ ≤ C
∫ t2

t1

∫
Rd

u+

1 + |x|d+σ
dx dt,

where C depends on Ω,Ω′, t1, t2, and t′1.

Let us point out that the kernels considered in [6] are more general than our
kernels. Specifically, Chang-Lara and Dávila considered when σ ∈ [1, 2)

Lu = (2− σ)

∫
Rd
δ̂u(x, y)K(y) dy + b ·Du(x),

where δ̂u(x, y) = u(x+ y)− u(x)−Du(x)yχB1
, K(y) ∈ L0, and for some β > 0

sup
r∈(0,1)

rσ−1
∣∣∣b+ (2− σ)

∫
B1\Br

yK(y) dy
∣∣∣ ≤ β. (2.2)

Note that for σ > 1, since

δu(x, y) = δ̂u(x, y)−Du(x)yχBc1 ,

we can rewrite our operator and get

b = −(2− σ)

∫
Bc1

yK(y) dy.

Obviously, |b| ≤ C, where C depends d, σ, and Λ, and it is easy to check that (2.2)
holds for b and K above.

The next proposition is [22, Theorem 7.1].

Proposition 2.4. Let u satisfy in Q1

ut −M+u ≤ C0 and ut −M−u ≥ −C0.

Then there are constants γ ∈ (0, 1) and C1 > 0 only depending on d, σ, λ, and Λ
such that

[u]γ/σ,γ;Q1/2
≤ C1‖u‖L∞((−1,0);L1(ωσ)) + CC0.

Here

‖u‖L∞((−1,0);L1(ωσ)) = sup
t∈(0,1)

∫
Rd

|u(t, x)|
1 + |x|d+σ

dx.

Note that we replaced ‖u‖L∞((−1,0)×Rd) by ‖u‖L∞((−1,0);L1(ωσ)), which follows from
a simple localization argument. See, for instant, [6, Corollary 7.1]. In the sequel,
we always assume γ < σ.

We finish this section by proving the following global Hölder estimate.

Lemma 2.5. Let u satisfy in Q1

ut −M+u ≤ C0 and ut −M−u ≥ −C0,

where C0 is a constant and u ≡ 0 in Rd+1
0 \ Q1. Then there exists a constant

α ∈ (0, 1) depending on d, λ,Λ, and σ, so that

[u]α/σ,α;Q1
≤ CC0,

where C depends on d, λ,Λ, and σ.
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Proof. Thanks to the interior Hölder estimate Proposition 2.4, it suffices to prove
the estimate near the parabolic boundary of Q1. We consider the lateral boundary
and bottom separately. Define φ : Rd → R+ as

φ(x) =

{
xβd for xd > 0

0 for xd ≤ 0
,

where β ∈ (0, 1). We claim that for sufficiently small β ∈ (0, σ) depending on d, λ,
Λ, and σ, we have

M+φ(x) < −Ĉxβ−σd in {xd > 0},

where Ĉ depends on d, λ,Λ, and σ. By scaling, it is obvious that

M+φ(x) = xβ−σd M+φ(e),

where e = (0, 0, . . . , 0, 1). Therefore, we only need to estimate M+φ(e).
Case 1: σ > 1. By definition,

M+φ(e)

= (2− σ)xβ−σd

(∫
{yd>−1}

+

∫
{yd<−1}

)(
Λ(δφ(e, y))+ − λ(δφ(e, y))−

) 1

|y|d+σ
dy

=: (2− σ)xβ−σd (I1 + I2).

When yd > −1, by concavity, it follows that

φ(e+ y) = (1 + yd)
β < 1 + βyd and δφ(e, y) ≤ 0.

Therefore,

I1 ≤
∫
{|yd|<1}

λδφ(e, y)
1

|y|d+σ
dy

= λ

∫
yd∈(0,1)

(
(1 + yd)

β + (1− yd)β − 2
) 1

|y|d+σ
dy.

Notice that for any s ∈ (−1, 1),

(1 + s)β < 1 + βs+
β(β − 1)

2
s2 +

β(β − 1)(β − 2)

6
s3,

which implies that for yd ∈ (0, 1)

(1 + yd)
β + (1− yd)β − 2 < β(β − 1)y2

d.

Therefore,

I1 < λβ(β − 1)

∫
yd∈(0,1)

y2
d

|y|d+σ
dy = C1β(β − 1),

where C1 depends on d, λ, and σ.
Now we turn to I2. Since φ(e+ y) = 0 when yd < −1, we have

I2 =

∫
{yd<−1}

Λ(−βyd − 1)+ − λ(−βyd − 1)−

|y|d+σ
dy

≤
∫
{yd<−1/β}

Λ(−βyd − 1)

|y|d+σ
dy = C2β

σ,
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where C2 depends on Λ, d, and σ. Thanks to the estimates of I1 and I2 above, it
follows that

M+φ(e) ≤ C1β(β − 1) + C2β
σ.

By choosing β sufficiently small depending on λ,Λ, d, and σ so that

C1(β − 1) + C2β
σ−1 ≤ −C1/2,

the claim is proved.
Case 2: σ < 1. Let I1 and I2 be defined as before. Since φ(x) = 0 for xd < 0, we

get

I2 = −(2− σ)

∫
{yd<−1}

λ

|y|d+σ
dy = −C3, (2.3)

where C3 > 0 depends on σ, λ, and d. For I1, we have

I1 = (2− σ)

∫
{yd>0}

Λ((1 + yd)
β − 1)

|y|d+σ
dy − (2− σ)

∫
yd∈(−1,0)

λ(1− (1 + yd)
β)

|y|d+σ
dy

≤ (2− σ)Λ

∫
{yd>0}

(1 + yd)
β − 1

|y|d+σ
dy → 0 as β → 0

by the monotone convergence theorem. Therefore, we can choose β small depending
on Λ, λ, d, and σ so that

M+φ(e) ≤ −C3/2.

The claim is proved.
Case 3: σ = 1. In this case, we still have (2.3). For I1, we notice that integrand

in the region {−1 < yd < 0} ∪ {|y| < 1} is negative, and∫
{yd>0}∩{|y|>1}

(1 + yd)
β − 1

|y|d+σ
dy → 0 as β → 0

by the monotone convergence theorem. Thus the claim follows as well.
Now we are ready to consider u near the lateral boundary. By a translation and

rotation of the coordinates, we replace the ball B1 by B1(e) and estimate u near
the origin. Define the barrier function ψ(t, x) = C0

2β−σĈ
φ(x). Obviously,

∂tψ(t, x)−M+ψ(t, x) = − C0

2β−σĈ
M+φ(x) >

C0

2β−σ
xβ−σd > C0

when x ∈ B1(e). On the other hand, ψ ≥ 0 in R× Rd. Since

ut −M+u ≤ C0

and u ≡ 0 outside Q1, by the comparison principle,

u(t, x) ≤ ψ(t, x) =
C0

2β−σĈ
xβd .

By considering −u instead of u, we have u ≥ − C0

2β−σĈ
xβd . Hence, around the origin

|u| ≤ C|x|β . By rotation of the coordinate, we obtain the estimate near the lateral
boundary.

For the bottom, let φ̃ = C0(t0 + 1) so that φ̃(−1) = 0 and φ̃′(t) = C0. This
yields that

∂tφ̃−M+φ = C0.
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Moreover, φ̃ ≥ 0 in (−1, 0)× Rd. By the comparison principle again, u ≤ φ in Q1.
In particular, near the bottom u ≤ C0(t+ 1), which further implies |u| ≤ C0(t+ 1)
by symmetry.

Combining the estimates of lateral boundary and bottom with the interior Hölder
estimate, we prove the lemma. �

3. A Liouville theorem

The aim of this section is to prove the following Liouville theorem for the fully
nonlinear parabolic nonlocal equation with non-symmetric kernels. The elliptic
version for symmetric kernels was established in [23].

Theorem 3.1. Let σ0 ∈ (0, 1) and σ ∈ [σ0, 2). There is a constant α̂ ∈ (0, 1/2)
depending on d, λ,Λ, and σ0 such that the following statement holds. Let α ∈ (0, α̂)

be such that [σ + α̂] < σ + α and if u ∈ C1+α
σ ,σ+α

loc (Rd+1
0 ) satisfying the following

properties:
(i) For any β ∈ [0, σ + α] and R ≥ 1, we have

[u]β/σ,β;QR ≤ N0R
σ+α−β ; (3.1)

(ii) For any (s, h) ∈ Rd+1
0 , we have

∂t
(
u(·+ s, ·+ h)− u

)
−M−

(
u(·+ s, ·+ h)− u

)
≥ 0, (3.2)

∂t
(
u(·+ s, ·+ h)− u

)
−M+

(
u(·+ s, ·+ h)− u

)
≤ 0; (3.3)

For σ > 1, we further impose (iii) For any nonnegative measure µ in Rd with
compact support,

∫
Rd δu(t, x, h) dµ(h) is a subsolution.

Then u is a polynomial of degree ν in x and 1 in t, where ν is the integer part
of σ + α.

Remark 3.2. As in [23], it is possible to relax Condition (i) in Theorem 3.1 by
assuming that (3.1) is satisfied for any β ∈ [0, σ + α′] and R ≥ 1, where α′ ∈ (0, α)
is a constant satisfying σ + α′ > ν. A simple computation reveals that in the case
we also require that σ > 1 + α − α′ when σ > 1 and ν = 1; and σ > α − α′ when
σ < 1 and ν = 0.

To prove Theorem 3.1, we first present a few lemmas. Define

P (t, x) =

∫
Rd

(
δu(t, x, y)− δu(0, 0, y)

)+ 2− σ
|y|d+σ

dy,

N(t, x) =

∫
Rd

(
δu(t, x, y)− δu(0, 0, y)

)− 2− σ
|y|d+σ

dy.

Lemma 3.3. Let α̂ ∈ (0, 1/2) be a constant satisfying α̂ < σ/2. Under the condi-
tions (i) and (ii) of Theorem 3.1, for any κ ≥ 2 and l ∈ N ∪ {0}, we have

sup
Q
κl

(
P +N + |ut − ut(0, 0)|

)
≤ CN0κ

αl ≤ CN0κ
α̂l (3.4)

and

[ut]γ/σ,γ;Q1/2
≤ Cκα̂, (3.5)

where C depends on d, λ,Λ, and σ.
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Proof. We first estimate P and N assuming that ν = 2. Fix (t, x), (t′, x′) ∈ Q1 and
set l = |x− x′|+ |t− t′|σ. By Condition (i), when |y| < l,

|δu(t, x, y)− δu(t′, x′, y)|

=
∣∣∣ ∫ 1

0

y
[
Du(t, x+ sy)−Du(t, x)−

(
Du(t′, x′ + sy)−Du(t′, x′)

)]
ds
∣∣∣

≤ C|y|2lσ+α−2[u]1+α/σ,σ+α;Q2
≤ CN0|y|2lσ+α−2. (3.6)

Similarly, when |y| ≥ l,

|δu(t, x, y)− δu(t′, x′, y)| ≤ C|y|σ+α−1l[u]1+α/σ,α+σ;Q1+|y| ≤ CN0l|y|σ+α−1. (3.7)

Combining (3.6) and (3.7), we have∫
Rd
|δu(t, x, y)− δu(t′, x′, y)| 2− σ

|y|d+σ
dy

≤ CN0l
σ+α−2

∫
Bl

(2− σ)|y|2

|y|d+σ
dy + CN0l

∫
Rd\Bl

(2− σ)|y|σ+α−1

|y|d+σ
dy

≤ CN0l
α. (3.8)

Hence P,N ∈ Cα,α/σ(Q1). Because P (0, 0) = N(0, 0) = 0, we have

P (t, x) +N(t, x) ≤ CN0 in Q1.

By modifying the estimate above, we can prove the same estimate for P when ν = 0
or 1.

We then use a scaling argument. Define û(t, x) = η−α−σu(ησt, ηx) for any η > 1.
It is easily seen that û satisfies all the conditions in this lemma. Hence, we know
that ∫

Rd

(2− σ)
∣∣δû(t, x, y)− δû(0, 0, y)

∣∣
|y|d+σ

dy ≤ CN0 in Q1.

Therefore,

P (ησt, ηx) +N(ησt, ηx) ≤ CN0η
α in Q1,

which together with (3.2) and (3.3) implies (3.4).
To prove (3.5), we take h = 0 in (3.2) and (3.3), and then multiply them by 1/s.

By letting s→ 0, we know that ut as well as ut−ut(0, 0) are sub and super-solutions
at the same time. By Proposition 2.4, we obtain that ut ∈ Cγ,γ/σ(Q1/2) for some
γ > 0 depending on d, λ,Λ, and σ, and

[ut]γ/σ,γ;Q1/2
= [ut − ut(0, 0)]γ/σ,γ;Q1/2

≤ C sup
t∈(−1,0)

∫
Rd

|ut − ut(0, 0)|
1 + |x|σ+d

dx.

Using (3.4), for any t ∈ (−1, 0),∫
Rd

|ut − ut(0, 0)|
1 + |x|d+σ

dx dt

≤
∫
B1

|ut − ut(0, 0)|
1 + |x|d+σ

dx dt+

∞∑
i=0

∫
Bκi+1\Bκi

|ut − ut(0, 0)|
1 + |x|d+σ

dx dt
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≤ CN0

∫
B1

1

1 + |x|d+σ
dx dt+ CN0

∞∑
i=0

∫
Bκi+1\Bκi

κα̂(i+1)

1 + |x|d+σ
dx dt

≤ CN0 + CN0

∞∑
i=0

κα̂(i+1)

∫ κi+1

κi

rd−1

1 + rd+σ
dr

≤ CN0 + CN0

∞∑
i=0

κα̂(1− κ−σ)

1− κα̂−σ
≤ CN0κ

α̂,

where C depends only on d, λ,Λ, and σ. Here we used the fact α̂ < σ/2 and κ ≥ 2
in the last inequality. Therefore, the lemma is proved. �

By dividing u by a CN0, where C is the constant in (3.4), using Lemma 3.3 we
have that for any κ ≥ 2 and l ∈ N ∪ {0},

sup
Q
κl

P ≤ κα̂l, sup
Q
κl

N ≤ κα̂l. (3.9)

We are going to prove inductively that there exists a sufficiently large κ ≥ 2 and
sufficiently small α̂ ∈ (0, 1/2) such that

sup
Q
κ−l

P ≤ κ−α̂l, sup
Q
κ−l

N ≤ κ−α̂l for any l ∈ N.

For a fixed r ∈ (0, 1), assume that P attains its maximum in Qr at (t0, x0).
Denote

A :=
{
y : δu(t0, x0, y)− δu(0, 0, y) > 0

}
.

Then

P (t0, x0) =

∫
A

(
δu(t0, x0, y)− δu(0, 0, y)

) 2− σ
|y|d+σ

dy,

N(t0, x0) =

∫
Rd\A

(
δu(t0, x0, y)− δu(0, 0, y)

) 2− σ
|y|d+σ

dy.

We define

v(t, x) =

∫
A

(
δu(t, x, y)− δu(0, 0, y)

) 2− σ
|y|d+σ

dy.

Notice that v ≤ P , and in particular v ≤ 1 in Q1. Moreover, P (t0, x0) = v(t0, x0).
We denote v = (1− v)+.

Lemma 3.4. Suppose that α̂ ∈ (0, 1/2) satisfying α̂ < σ/2 and κ ≥ 2. Then we
have

vt −M−v ≥ −C(κα̂ − 1) in Q3/4, (3.10)

where C is a positive constant depending only on d, λ,Λ, and σ.

Proof. Since v ≤ 1 in Q1, for any (t, x) ∈ Q1 we have v(t, x) = 1− v(t, x), thus

δv(t, x, y) = v(t, x+ y)− v(t, x)−Dv(t, x)y

= (1− v)+(t, x+ y)− (1− v)(t, x) +Dv(t, x)y

= (v − 1)+(t, x+ y)− δv(t, x, y).

Therefore, we have(
δv(t, x, y)

)− ≥ (δv(t, x, y)
)+ − (v − 1)+(t, x+ y),(

δv(t, x, y)
)+ ≤ (δv(t, x, y)

)−
+ (v − 1)+(t, x+ y).



NONLOCAL PARABOLIC EQUATION 13

These imply

vt −M−v = −vt − (2− σ)

∫
Rd

λ(δv(t, x, y))+ − Λ(δv(t, x, y))−

|y|d+σ
dy

≥ −vt +M+v − (2− σ)(Λ + λ)

∫
Rd

(v − 1)+(t, x+ y)

|y|d+σ
dy.

From Condition (iii) and an approximation, v satisfies

vt −M+v ≤ 0.

On the other hand, we have∫
Rd

(v − 1)+(t, x+ y)

|y|d+σ
dy ≤

∫
Rd

(P − 1)+(t, x+ y)

|y|d+σ
dy.

Since P satisfies (3.9), for (t, x) ∈ Q3/4, we have P (t, x + y) ≤ 1 when y ∈ B1/4,
and thus the right-hand side above is equal to

∞∑
i=0

∫
Bκi+1−3/4\Bκi−3/4

(P − 1)+(t, x+ y)

|y|d+σ
dy,

which by (3.9) is bounded by
∞∑
i=0

∫
Bκi+1−3/4\Bκi−3/4

κ(i+1)α̂ − 1

|y|d+σ
dy

≤ C
∞∑
i=0

(κ(i+1)α̂ − 1)κ−iσ = C
( κα̂

1− κα̂−σ
− 1

1− κ−σ
)
≤ C

(
κα̂ − 1

)
,

where C only depends on d, λ,Λ, and σ0. Here we used the fact α̂ < σ/2 and κ ≥ 2
in the last inequality. The lemma is proved. �

Let θ̂ = λ/(4Λ) and γ be the constant in Proposition 2.4. For any r1 > 0, define
the set

Dr1 = {(t, x) ∈ Qr1 : v ≥ 1− θ̂}.

Lemma 3.5. Suppose that α̂ ∈ (0, 1/2) satisfying α̂ < σ/2 and κ ≥ 2. There
exist some η ∈ (0, 1) sufficiently close to 1 and c ∈ (0, 1) sufficiently small, both
depending only on d, λ,Λ, and σ, such that for r1 = cκ−α̂/γ ,

|Dr1 | ≤ η|Qr1 |. (3.11)

Proof. By contradiction we assume that |Dr1 | > η|Qr1 |, and consider

w :=

∫
Rd\A

(
δu(t, x, y)− δu(0, 0, y)

) 2− σ
|y|d+σ

dy.

By Condition (iii) and an approximation, w is a subsolution, i.e.,

wt −M+w ≤ 0 in Rd+1
0 . (3.12)

From (3.2) and (3.3), we know that in Rd+1
0 ,

λ

Λ
P − ut − ut(0, 0)

Λ
≤ N ≤ Λ

λ
P − ut − ut(0, 0)

λ
, (3.13)

implying that in Q1/2

λ

Λ
P −

[ut]γ/σ,γ;Q1/2

Λ

(
|x|γ + |t|γ/σ

)
≤ N ≤ Λ

λ
P +

[ut]γ/σ,γ;Q1/2

λ

(
|x|γ + |t|γ/σ

)
.
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From (3.5), (3.9), and the above inequality, we obtain

w = P − v −N ≤
(
1− λ/Λ

)
P − v + Cκα̂

(
|x|γ + |t|γ/σ

)
≤ 1− λ/Λ− (1− θ̂) + Cκα̂

(
|x|γ + |t|γ/σ

)
≤ −λ/Λ + θ̂ + Cκα̂

(
|x|γ + |t|γ/σ

)
in Dr1 ,

where C only depends on d, λ,Λ, and σ. Now we choose c sufficiently small de-
pending only on d, λ,Λ, and σ, such that

− λ/Λ + θ̂ + Cκα̂
(
|x|γ + |t|γ/σ

)
≤ −3θ̂ + Cκα̂

(
cκ−α̂/γ

)γ ≤ −3θ̂ + Ccγ ≤ −θ̂ in Qr1 , (3.14)

which implies w ≤ −θ̂ in Dr1 . Since w is a subsolution (3.12), it follows immediately

that for any ε ∈ (0, r1), w̄ε(t, x) := (w + θ̂)+(εσt, εx) is a subsolution as well.
Moreover, ∣∣∣{w̄ε ≤ 0} ∩Qr1/ε

∣∣∣ > η
∣∣∣Qr1/ε∣∣∣. (3.15)

We estimate w̄ε by applying Proposition 2.3 with t1 = −1, t2 = 0, and Ω = Rd

w̄ε(0, 0) ≤ C
∫ 0

−1

∫
Rd

w̄ε
1 + |x|d+σ

dx dt

= C

∫ 0

−1

∫
Br1/ε

w̄ε
1 + |x|d+σ

dx dt+ C

∫ 0

−1

∫
Bc
r1/ε

w̄ε
1 + |x|d+σ

dx dt. (3.16)

We first consider the second term on the right-hand side of the inequality above∫ 0

−1

∫
Bc
r1/ε

w̄ε
1 + |x|d+σ

dx dt

≤
∫ 0

−1

∫
Bc
r1/ε

θ̂

1 + |x|d+σ
dx dt+

∫ 0

−1

∫
Bc
r1/ε

|w|(εσt, εx)

1 + |x|d+σ
dx dt

≤ Cθ̂(ε/r1)σ +

∫ 0

−εσ

∫
Bcr1

|w|(t, x)

εd+σ + |x|d+σ
dx dt. (3.17)

Since |w| ≤ max{P,N}, from (3.9), for any l ≥ 0,

sup
Q
κl

|w| ≤ κα̂l.

Therefore,∫ 0

−εσ

∫
Bcr1

|w|(t, x)

εd+σ + |x|d+σ
dx dt

≤
∫ 0

−εσ

∫
B1\Br1

|w|
εd+σ + |x|d+σ

dx dt+

∞∑
i=0

∫ 0

−εσ

∫
Bκi+1\Bκi

|w|
|x|d+σ

dx dt

≤ C
(
(ε/r1)σ + εσκα̂

)
, (3.18)

where C only depends on d, λ,Λ, and σ. We combine (3.17) and (3.18) to obtain
that

C

∫ 0

−1

∫
Bc
r1/ε

w̄ε
1 + |x|d+σ

dx dt ≤ C
(
(ε/r1)σ + εσκα̂

)
.
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Recall that r1 = cκ−α̂/γ . For the right-hand side of the inequality above, we want to

choose ε sufficiently small such that Cεσ(r−σ1 + κα̂) ≤ θ̂/4. Indeed, since c ∈ (0, 1)

and σ > γ, we have r−σ1 ≥ κα̂. It is sufficient to fix ε such that 2Cεσr−σ1 = θ̂/4,
i.e.,

ε/r1 =
(
θ̂/(8C)

)1/σ
:= c1,

where c1 only depends on d, λ,Λ, and σ. In other words, by taking ε = c1r1 we
have

C

∫ 0

−1

∫
Bc
r1/ε

w̄ε
1 + |x|d+σ

dx dt ≤ θ̂/4. (3.19)

Next we estimate the first term on the right-hand side of (3.16) using (3.15):

C

∫ 0

−1

∫
B1/c1

w̄ε
1 + |x|d+σ

dx dt

= C

∫(
(−1,0)×B1/c1

)
∩{w̄ε>0}

w̄ε
1 + |x|d+σ

dx dt

≤ C(1− η)|Q1/c1 | sup
(−1,0)×B1/c1

w̄ε

≤ C(1− η)|Q1/c1 | sup
(−1,0)×Br1

(w + θ̂)+ ≤ θ̂/4 (3.20)

upon taking η sufficiently close to 1 depending only on d, λ,Λ, and σ.

Combining (3.20) and (3.19) with (3.16), we have w̄ε(0, 0) ≤ θ̂/2 indicating that

w(0, 0) ≤ −θ̂/2, which contradicts to w(0, 0) = 0 by the definition of w. Therefore,
the lemma is proved. �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We mainly focus on the case when σ > 1. At the end of the
proof, we sketch the proof for the case when σ = 1. The proof of the case when
σ ∈ (0, 1) is similar, and thus omitted.

Let η and c be the constants in Lemma 3.5 and r1 = cκ−α̂/γ . From (3.11),∣∣{1− v ≥ θ̂} ∩Qr1∣∣ ≥ (1− η)
∣∣Qr1∣∣.

Recall that Q̃δr1 = (−r1
σ,−(δr1)σ)×Br1 . For δ sufficiently small depending on η,

we have ∣∣{1− v ≥ θ̂} ∩ Q̃δr1 ∣∣ ≥ 1− η
2

∣∣Q̃δr1 ∣∣.
We set r = δr1/2 and apply the weak Harnack inequality Corollary 2.2 to (1− v)+

in Q3/4 with (3.10) to obtain

inf
Qr

(1− v) + C(κα̂ − 1)rσ1

≥ C(δ)‖(1− v)+‖Lε1 (Q̃δr1 )r
−(d+σ)/ε1
1

≥ C(δ)θ̂
(
(1− η)|Q̃δr1 |/2

)1/ε1
r
−(d+σ)/ε1
1

= C(δ)θ̂
(
(1− η)(1− δσ)/2

)1/ε1
=: 2θ, (3.21)
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where θ is a small constant depending only on d, λ, Λ, and σ. We fix κ = 4/(cδ)2,
where c is chosen according to (3.14), which guarantees that

κ−1 ≤ cδ/2 · κ−α̂/γ

for any α̂ ∈ (0, γ/2). By the definitions of r above and r1 in Lemma 3.5, the
right-hand side of inequality above equals r, i.e., κ−1 < r.

Next, we choose α̂1 = log(1 + θ/C)/ log κ such that for any α̂ ∈ (0, α̂1),

C(κα̂ − 1)rσ1 < C(κα̂ − 1) < θ.

Therefore, from (3.21) and the inequality above we obtain that supQr v ≤ 1 − θ.
Since κ−1 < r,

sup
Qκ−1

P ≤ sup
Qr

P = P (t0, x0) = v(t0, x0) = sup
Qr

v ≤ 1− θ. (3.22)

Similarly,
sup
Qκ−1

N ≤ 1− θ. (3.23)

Set
α̂ = min

{
− log(1− θ)/ log κ, α̂1, γ/2

}
.

Then (3.22) and (3.23) implies

sup
Qκ−1

κα̂P ≤ 1, sup
Qκ−1

κα̂N ≤ 1. (3.24)

Let
P̃ (t, x) = κα̂P (κ−1x, κ−σt), Ñ(t, x) = κα̂N(κ−1x, κ−σt),

and
ũ(t, x) = κσ+α̂u(κ−1x, κ−σt).

From (3.13), we have

λ

Λ
P̃ − ũt − ũt(0, 0))

Λ
≤ Ñ ≤ Λ

λ
P̃ − ũt − ũt(0, 0)

λ
.

Since κ ≥ 2 and α̂ ≤ γ, we get

[ũt]γ/σ,γ;Q1/2
≤ κα̂−γ [ut]γ/σ,γ;Q1/2

≤ [ut]γ/σ,γ;Q1/2
.

On the other hand, for any l ≥ 0,

sup
Q
κl

P̃ = κα̂ sup
Q
κl−1

P ≤ κα̂κ(l−1)α̂ = κlα̂, sup
Q
κl

P̃ ≤ κlα̂.

Therefore, P̃ and Ñ satisfy all the conditions of P and N . Applying (3.24) to P̃

and Ñ , we have
sup
Qκ−1

P̃ ≤ κ−α̂, sup
Qκ−1

Ñ ≤ κ−α̂,

which further implies that

sup
Qκ−2

P ≤ κ−2α̂, sup
Qκ−2

N ≤ κ−2α̂.

By induction, for any l ∈ N,

sup
Q
κ−l

P ≤ κ−lα̂, sup
Q
κ−l

N ≤ κ−lα̂.

Therefore, we have in Q1

P (t, x) ≤ C
(
|x|α̂ + |t|α̂/σ

)
, N(t, x) ≤ C

(
|x|α̂ + |t|α̂/σ

)
.
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Since for any η ≥ 1, û(t, x) = η−σ−αu(ησt, ηx) satisfies the same condition as u,
replacing u by û in the definition of P and denoting it as Pû, we obtain

Pû(t, x) ≤ C
(
|x|α̂ + |t|α̂/σ

)
in Q1.

Returning to P , we have

η−αP (ησt, ηx) ≤ C
(
|x|α̂ + |t|α̂/σ

)
in Q1, which further implies that

sup
Qη

P (t, x)

|x|α̂ + |t|α̂/σ
≤ Cηα−α̂.

Let η →∞ yields

sup
(t,x)∈Rd+1

0

P (t, x)

|x|α̂ + |t|α̂/σ
= 0,

which gives P = 0. Similarly, N = 0.
From the definition of P and N , we have

u(t, x+ y)− u(t, x)−Du(t, x)y = u(0, y)− u(0, 0)−Du(0, 0)y.

Taking derivative in y, we have for any t ∈ (−∞, 0) and x, y ∈ Rd

Du(t, x+ y)−Du(t, x) = Du(0, y)−Du(0, 0),

which implies for fixed t, u is a polynomial in x of order at most two. Using
Condition (i) with β = 0, we infer that this order is at most ν. Using Condition
(ii) and P = N = 0, we get ut = c for some constant c. The proof is completed for
σ > 1.

Finally, we sketch the proof for σ = 1. From Condition (ii), similar to the proof
above, we know that u(· + s, · + h) − u, and thus Du and ut are both sub and
supersolutions, and are in Cγ/σ,γ(Q1/2). By Proposition 2.4, we have

[ut]γ/σ,γ;Q1/2
+ [Du]γ/σ,γ;Q1/2

≤ C sup
t∈[0,1]

∫
Rd

|Du|+ |ut|
1 + |x|d+1

dx.

From Condition (i), the right-hand side of the inequality above is less than∫
B1

1

1 + |x|1+d
dx+

∞∑
j=1

∫
B2j \B2j−1

C2jα

1 + |x|1+d
dx ≤ C

1− 2α−1

for any α ∈ (0, 1). By taking α̂ ≤ γ and scaling as before, we can prove that

[u]1+γ,1+γ;QR ≤ CRα−γ ,

i.e., u must be a linear function by sending R→∞. The theorem is proved. �

4. Schauder estimate for nonlocal parabolic equations

In this section, we prove Theorem 1.1 by applying the Liouville theorem, a blow-
up analysis, and a localization procedure. In the rest of the paper, we do not specify
the domain associated with the norm when it is Rd+1

0 = (−∞, 0)× Rd.
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4.1. Equations with translation invariant kernels. In this subsection, we con-
sider equations with translation invariant kernels, i.e., K = K(y). The main result
of the subsection is the following theorem.

Theorem 4.1. Let σ ∈ (0, 2) be a constant and A be an index set. There exists a
constant α̂ > 0 depending on d, λ,Λ, and σ, such that given 0 < α′ < α < α̂ satis-
fying [σ + α] < σ + α′ < σ + α the following holds. Let u ∈ C1+α′/σ,α′+σ

(
(−1, 0)×

Rd
)
∩ C1+α/σ,α+σ(Q1) satisfy

ut = inf
a∈A

(
Lau+ fa(t, x)

)
in Q1,

where La ∈ L0(σ, λ,Λ) with Ka = Ka(y) for any a ∈ A. Assume that

sup
(t,x)∈Q1

∣∣∣ inf
a∈A

fa(t, x)
∣∣∣ <∞.

Then

[u]1+α/σ,α+σ;Q1/2
≤ C[u]1+α′/σ,α′+σ;(−1,0)×Rd + C sup

a∈A
[fa]α/σ,α;Q1

,

where C only depends on d, λ,Λ, σ, α, and α′.

We denote

Qk =
(
− 1 + 2−(k+1)σ/(1− 2−σ), 0

)
×B1−2−k(0) (4.1)

for all sufficiently large integers k such that 2−(k+1)σ < 1− 2−σ. We shall prove a
stronger result:

sup
k

2−k(α−α′)[u]1+α/σ,α+σ;Qk

≤ C[u]1+α′/σ,α′+σ;(−1,0)×Rd + C sup
a∈A

[fa]α/σ,α;Q1
. (4.2)

The conclusion of the theorem is a particular case for k large only depending on
σ so that Q1/2 ⊂ Qk. Since we assume that u ∈ C1+α/σ,α+σ(Q1), there exists an
integer k such that

2−k(α−α′)[u]1+α/σ,α+σ;Qk = sup
l

2−l(α−α
′)[u]1+α/σ,α+σ;Ql .

Next, we prove (4.2) by contradiction. Assume that we can find solutions uj and
index sets Aj such that

∂tuj = inf
a∈Aj

(Lauj + fa) in Q1, sup
(t,x)∈Q1

∣∣∣ inf
a∈Aj

fa(t, x)
∣∣∣ <∞,

[uj ]1+α′/σ,σ+α′;(−1,0)×Rd + sup
a∈Aj

[fa]α/σ,α;Q1
≤ 1,

and sup
k

2−k(α−α′)[uj ]1+α/σ,σ+α;Qk ≥ j, (4.3)

where for any a ∈ Ak, La ∈ L0 with Ka = Ka(y). As explained above, for each j
there exists an integer kj so that

2−kj(α−α
′)[uj ]1+α/σ,α+σ;Qkj = sup

k
2−k(α−α′)[uj ]1+α/σ,α+σ;Qk .
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Lemma 4.2. For any j ≥ 1, we have

[uj ]1+α/σ,α+σ;Qkj ≤ sup
r>0

sup
(t,x)∈Qkj

r−(α−α′)[uj ]1+α′/σ,α′+σ;Qr(t,x)∩{t>−1}

≤ 4α−α
′
[uj ]1+α/σ,α+σ;Qkj . (4.4)

Moreover, we can find (tj , xj) ∈ Qkj and rj such that

1

2
[uj ]1+α/σ,α+σ;Qkj ≤ r

−(α−α′)
j [uj ]1+α′/σ,α′+σ;Qrj (tj ,xj)∩{t>−1} (4.5)

and

2kjrj → 0 as j →∞. (4.6)

Proof. The first inequality in (4.4) follows from the fact that for any (t, x), (s, y) ∈
Qkj with t ≥ s, we have (s, y) ∈ Qr(t, x) ∩ {t > −1}, where r = max(|x − y|, |t −
s|1/σ). See, for instance, Claim 3.2 of [23]. For the second inequality, if r ≤ 2−(kj+1),
for any (t, x) ∈ Qkj , we have Qr(t, x) ⊂ Qkj+1 and

r−(α−α′)[uj ]1+α′/σ,α′+σ;Qr(t,x)∩{t>−1}

≤ 2α−α
′
[uj ]1+α/σ,α+σ;Qkj+1 ≤ 4α−α

′
[uj ]1+α/σ,α+σ;Qkj ,

where the last inequality is due to the choice of kj . On the other hand, if r >

2−(kj+1), for any (t, x) ∈ Qkj ,

r−(α−α′)[uj ]1+α′/σ,α′+σ;Qr(t,x)∩{t>−1}

≤ 2(kj+1)(α−α′)[uj ]1+α′/σ,α′+σ;(−1,0)×Rd ≤ 2α−α
′
[uj ]1+α/σ,α+σ;Qkj ,

where the last inequality follows from (4.3). Thus, we obtain the second inequality
in (4.4).

Due to (4.4), we can find (tj , xj) ∈ Qkj and rj such that (4.5) is satisfied and
thus by (4.3),

(2kjrj)
α−α′ ≤

2[uj ]1+α′/σ,α′+σ;Qrj (tj ,xj)∩{t>−1}

2−kj(α−α
′)[uj ]1+α/σ,α+σ;Qkj

→ 0 as j →∞,

which further implies (4.6). The lemma is proved. �

Let Tj be the Taylor expansion of uj at Xj = (tj , xj) of order ν = [σ + α] in x
and 1 in t. Now we consider the blow-up sequence

vj(t, x) =
uj(tj + rσj t, xj + rjx)− Tj(tj + rσj t, xj + rjx)

rσ+α
j [uj ]1+α/σ,α+σ;Qkj

.

Here (tj , xj) and rj are from Lemma 4.2. Note that vj is well defined on
(−Rσj , 0)× Rd, where by Lemma 4.2,

Rj := 2−(kj+1)r−1
j →∞ as j →∞.

Observe that from (4.5) and (4.6), for sufficiently large j such that rj ≤ 2−(kj+1),

[vj ]1+α′/σ,α′+σ;Q1
=
rσ+α′

j [uj ]1+α′/σ,α′+σ;Qrj (tj ,xj)

rσ+α
j [uj ]1+α/σ,α+σ;Qkj

≥ 1/2. (4.7)
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Lemma 4.3. For any R > 0 and β ∈ [0, σ + α′], we have

[vj ]β/σ,β;QR∩{t>−Rσj } ≤ CR
σ+α−β , (4.8)

where C depends only on α and α′. Moreover, for any 0 < R < Rj and β ∈
[0, σ + α], we have

[vj ]β/σ,β;QR ≤ CR
σ+α−β , (4.9)

where C depends only on α and α′. Thus, we can find v ∈ C1+α/σ,σ+α(Rd+1
0 ) such

that v satisfies (4.9) for any R > 0 and β ∈ [0, σ + α], and along a subsequence
vj → v in C1+β/σ,σ+β locally uniformly for any β ∈ [0, σ + α).

We remark that (4.8) will be used below to prove that v satisfies Condition (iii)
in Theorem 3.1, and (4.9) will be used to show that v satisfies Condition (i).

Proof of Lemma 4.3. For any R > 0 and β ∈ [0, σ + α′],

[vj ]β/σ,β;QR∩{t>−Rσj }

=
[uj(tj + rσj ·, xj + rj ·)− Tj(tj + rσj ·, xj + rj ·)]β/σ,β;QR∩{t>−Rσj }

rσ+α
j [uj ]1+α/σ,α+σ;Qkj

≤
rβj [uj − Tj ]β/σ,β;QRrj (tj ,xj)∩{t>−1}

rσ+α
j [uj ]1+α/σ,α+σ;Qkj

≤
rβj (Rrj)

σ+α′−β [uj ]1+α′/σ,α′+σ;QRrj (tj ,xj)∩{t>−1}

rσ+α
j [uj ]1+α/σ,α+σ;Qkj

≤ CRσ+α−β ,

where we used (4.4) in the last inequality.
For any R < Rj , by the choice of kj we have

[vj ]1+α/σ,α+σ;QR =
[uj(tj + rσj ·, xj + rj ·)]1+α/σ,α+σ;QR

rσ+α
j [uj ]1+α/σ,α+σ;Qkj

=
[uj ]1+α/σ,α+σ;QRrj (tj ,xj)

[uj ]1+α/σ,α+σ;Qkj
≤

[uj ]1+α/σ,α+σ;Qkj+1

[uj ]1+α/σ,α+σ;Qkj
≤ 2α−α

′
.

Using the interpolation inequality, we reach (4.9). The last statement of the lemma
follows from the Arzela-Ascoli theorem and the Cauchy diagonal method. �

Lemma 4.4. The function v in Lemma 4.3 satisfies the conditions in Theorem
3.1.

Proof. By Lemma 4.3, Condition (i) is satisfied. Next we verify Condition (iii) for
σ ∈ (1, 2). For any measure µ with compact support and δ ∈ (0, 1), we define

Vj(t, x) =

∫
Rd
vj(t, x+ h)− vj(t, x)− vj(t, x)− vj(t, x− δh)

δ
dµ(h).
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Since Tj is linear in t, from the definition of vj , we have

∂tVj(t, x) =
r−αj

[uj ]1+α/σ,α+σ;Qkj

·
∫
Rd

[
∂tuj(tj + rσj t, xj + rj(x+ h))− ∂tuj(tj + rσj t, xj + rjx)

−
∂tuj(tj + rσj t, xj + rjx)− ∂tuj(tj + rσj t, xj + rj(x− δh))

δ

]
dµ(h),

which is equal to

r−αj
[uj ]1+α/σ,α+σ;Qkj

[ ∫
Rd
∂tuj(tj + rσj t, xj + rj(x+ h)) dµ(h)

+

∫
Rd

∂tuj(tj + rσj t, xj + rj(x− δh))

δ
dµ(h)

− (1 + 1/δ)‖µ‖L1
∂tuj(tj + rσj t, xj + rjx)

]
. (4.10)

For any a ∈ Aj , define K̂a(y) = rd+σ
j Ka(rjy), which satisfies

λ

|y|d+σ
≤ K̂a(y) ≤ Λ

|y|d+σ
,

and L̂a be the corresponding operator with kernel K̂a.
Clearly,

L̂aVj =

∫
Rd

[
L̂a(vj(t, x+ h)− vj(t, x))− L̂a(vj(t, x)− vj(t, x− δh))

δ

]
dµ(h)

=
r−αj

[uj ]1+α/σ,α+σ;Qkj

∫
Rd

{
(Lauj)(tj + rσj t, xj + rjx+ rjh)

− (Lauj)(tj + rσj t, xj + rjx)

−
(Lauj)(tj + rσj t, xj + rjx)− (Lauj)(tj + rσj t, xj + rj(x− δh))

δ

}
dµ(h).

where in the second equality, we used the definitions of L̂a, vj and the fact that
since Tj is at most second-order in x variable, for σ > 1 and any y ∈ Rd

δTj(t, x+ h, y)− δTj(t, x, y) = 0.

Therefore, for any (t, x) ∈ (−Rσj , 0)× Rd,

sup
a∈Aj

L̂a(Vj) =
r−αj

[uj ]1+α/σ,α+σ;Qkj
sup
a∈Aj

{∫
Rd

(
(Lauj)(tj + rσj t, xj + rjx+ rjh)

+
(Lauj)(tj + rσj t, xj + rj(x− δh))

δ

)
dµ(h)− (1 +

1

δ
)(Lauj)(tj + rσj t, xj + rjx)

}
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=
r−αj

[uj ]1+α/σ,α+σ;Qkj
sup
a∈Aj

{∫
Rd

(Lauj)(tj + rσj t, xj + rjx+ rjh)

+ fa(tj + rσj r, xj + rjx+ rjh) +
1

δ

(
(Lauj)(tj + rσj t, xj + rj(x− δh))

+ fa(tj + rσj t, xj + rj(x− δh))
)
dµ(h)

− (1 +
1

δ
)((Lauj)(tj + rσj t, xj + rjx) + fa(tj + rσj t, xj + rjx)) · ‖µ‖L1

−
∫
Rd

(
fa(tj + rσj t, xj + rjx+ rjh)− fa(tj + rσj t, xj + rjx)

+
1

δ
(fa(tj + rσj t, xj + rj(x− δh))− fa(tj + rσj t, xj + rjx)

)
dµ(h)

}
.

Note that for sufficiently large j such that max((−t)1/σ, |x| + |h|) ≤ Rj whenever
h ∈ suppµ, we have

|fa(tj + rσj t, xj + rjx+ rjh)− fa(tj + rσj t, xj + rjx)| ≤ [fa]α/σ,α;Q1
|rjh|α,

|fa(tj + rσj t, xj + rj(x− δh))− fa(tj + rσj t, xj + rjx)| ≤ [fa]α/σ,α;Q1
|δrjh|α.

Therefore, by the inequality

sup{f + g − h} ≥ inf f + inf g − inf h,

we have that for (t, x) ∈ Rd+1
0 and h ∈ suppµ so that max((−t)1/σ, |x|+ |h|) ≤ Rj ,

sup
a∈Aj

L̂a(Vj)(t, x)

≥
r−αj

[uj ]1+α/σ,α+σ;Qkj

[
inf
a∈Aj

∫
Rd

(Lauj)(tj + rσj t, xj + rjx+ rjh)

+ fa(tj + rσj r, xj + rjx+ rjh) dµ(h)

+ inf
a∈Aj

∫
Rd

1

δ

(
(Lauj)(tj + rσj t, xj + rj(x− δh))

+ fa(tj + rσj t, xj + rj(x− δh))
)
dµ(h)

− δ + 1

δ
‖µ‖L1 inf

a
[(Lauj)(tj + rσj t, xj + rjx) + fa(tj + rσj t, xj + rjx)]

− (1 + δα−1)rαj sup
a∈Aj

[fa]α/σ,α;Q1

∫
Rd
|h|α dµ(h)

]
. (4.11)

Since each uj satisfies

∂tuj = inf
a∈Aj

(Lauj + fa) in Q1, (4.12)

it follows from (4.10) and (4.11) that in any bounded subset of Rd+1
0 , for sufficiently

large j,

∂tVj − sup
a∈Aj

L̂aVj ≤
1 + δα−1

[uj ]1+α/σ,α+σ;Qkj
sup
a∈Aj

[fa]α/σ,α

∫
Rd
|h|α dµ(h). (4.13)

We denote

V (t, x) :=

∫
Rd

[
v(t, x+ h)− v(t, x)− v(t, x)− v(t, x− δh)

δ

]
dµ(h).
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For fixed (t, x) ∈ Rd+1
0 , by (4.8) in Lemma 4.3 and using the fact that µ has compact

support, we have

lim
j
∂tVj(t, x) = ∂t lim

j
Vj(t, x) = ∂tV (t, x), (4.14)

for |y| ≤ 1,

|δVj(t, x, y)| ≤ C|y|σ+α′ , |δV (t, x, y)| ≤ C|y|σ+α′ , (4.15)

and for |y| > 1,

|Vj(t, y)|, |V (t, y)| ≤ C|y|α, (4.16)

where C depends on µ. Clearly,

sup
a∈Aj

∣∣La(Vj − V )(t, x)
∣∣ ≤ C ∫

Rd

∣∣δ(Vj − V )(t, x, y)
∣∣|y|−d−σ dy.

It follows from Lemma 4.3 that δ(Vj − V ) → 0 locally uniformly. Therefore, by
(4.15), (4.16), and the dominated convergence theorem, we have

lim
j

sup
a∈Aj

∣∣(La(Vj − V )(t, x))
∣∣ = 0,

i.e.,

lim
j

sup
a∈Ak

LaVj(t, x) = sup
a∈Ak

LaV (t, x). (4.17)

Since µ has compact support, by Lemma 4.2 and (4.3), we have Rj →∞ and

[uj ]1+α/σ,α+σ;Qkj ≥ 2−kj(α−α
′)[uj ]1+α/σ,α+σ;Qkj →∞.

For fixed δ ∈ (0, 1), we send j to infinity to get from (4.13), (4.14), and (4.17) that

∂tV −M+V ≤ 0 in Rd+1
0 .

By sending δ to 0 and using the dominated convergence theorem, we conclude that∫
Rd

(
v(t, x+ h)− v(t, x)− hTDv(t, x)

)
dµ(h)

is a subsolution as well. Therefore, for σ > 1, v satisfies Condition (iii).
It remains to verify that v satisfies Condition (ii). Clearly, for fixed (t, x), (s, h) ∈

Rd+1
0 , when j is sufficiently large,

∂t
(
vj(t+ s, x+ h)− vj(t, x)

)
= r−αj [uj ]

−1

1+α/σ,α+σ;Qkj

·
(
∂tuj(tj + rσj (t+ s), xj + rj(x+ h))− ∂tuj(tj + rσj t, xj + rjx)

)
. (4.18)

On the other hand,

M−
(
vj(t+ s, x+ h)− vj(t, x)

)
= r−αj [uj ]

−1

1+α/σ,α+σ;Qkj

· M−
(
uj(tj + rσj (t+ s), xj + rj(x+ h))− uj(tj + rσj t, xj + rjx)

)
. (4.19)

Combining (4.12), (4.18), and (4.19), we obtain that for j sufficiently large,

∂t
(
vj(t+ s, x+ h)− vj(t, x)

)
−M−

(
vj(t+ s, x+ h)− vj(t, x)

)
≥ −[uj ]

−1

1+α/σ,α+σ;Qkj
sup
a

[fa]α/σ,α;Q1
.

By sending j to infinity, we get for any (t, x) ∈ Rd+1
0 ,

∂t
(
v(t+ s, x+ h)− v(t, x)

)
−M−

(
v(t+ s, x+ h)− v(t, x)

)
≥ 0.
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Similarly,

∂t
(
v(t+ s, x+ h)− v(t, x)

)
−M+

(
v(t+ s, x+ h)− v(t, x)

)
≤ 0.

The lemma is proved. �

Now we are ready to finish

Proof of Theorem 4.1. By Lemma 4.4 and Theorem 3.1, v is a polynomial of order
ν in x and 1 in t. Since at the origin vj along with its first derivative in t and up to
ν-th order derivatives in x are 0, by Lemma 4.3 the same is true for v. Therefore,
v ≡ 0. This gives us a contradiction with (4.7) and Lemma 4.3. The proof is
completed. �

4.2. Equations with (t, x)-dependent kernels. In this subsection, we consider
the case that kernels also depend on (t, x) and Hölder continuous in (t, x), i.e., there
exists A > 0 such that for any a ∈ A, (1.4) is satisfied. We only prove Theorem
1.1 in the case when σ + α > 2 and the proof of the cases σ + α < 2 is similar and
actually simpler. We divide the proof into several steps.

Let η be a nonnegative smooth cutoff function with η ≡ 1 in Q1 and vanishes
outside (−(5/4)σ, (5/4)σ)×B5/4. Set v := ηu ∈ C1+α/σ,α+σ and note that in Q1,

vt = ηut + ηtu = inf
a∈A

(ηLau+ ηfa + ηtu)

= inf
a∈A

(Lav + ha + ηfa + ηtu)

= inf
a∈A

(∫
Rd
δv(t, x, y)Ka(0, 0, y) dy + ga + ha + ηfa + ηtu

)
,

where

ha = ηLau− Lav

=

∫
Rd

(
(η(t, x)− η(t, x+ y))u(t, x+ y) + yTDη(t, x)u(t, x)

)
Ka(t, x, y) dy

and

ga =

∫
Rd
δv(t, x, y)

(
Ka(t, x, y)−Ka(0, 0, y)

)
dy.

Here in order to apply the argument of freezing the coefficients, we subtracted and
added Ka(0, 0, y) in the formula above.

Lemma 4.5. Assume that u ∈ C1+α/σ,σ+α(Q11/8) ∩ Cα/σ,α((−(11/8)σ, 0) × Rd).
Let ha and ga be functions defined above. Then for any α ∈ A, we have

[ga]α/σ,α;Q1
≤ CA

(
[v]1+α/σ,α+σ + [v]α/σ,α

)
, (4.20)

[ha]α/σ,α;Q1
≤ C(A+ 1)

(
‖u‖α/σ,α;(−(11/8)σ,0)×Rd + ‖D2u‖L∞(Q11/8)

)
. (4.21)

Proof. For (t, x), (t′, x′) ∈ Q1, set l = max(|x − x′|, |t − t′|σ). Without loss of
generality, we may assume that l ≤ 1/4.
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Estimates of ga: From the definition and the triangle inequality,∣∣ga(t, x)− ga(t′, x′)
∣∣

=
∣∣∣ ∫

Rd
δv(t, x, y)

(
Ka(t, x, y)−Ka(0, 0, y)

)
dy

−
∫
Rd
δv(t′, x′, y)

(
Ka(t′, x′, y)−Ka(0, 0, y)

)
dy
∣∣∣

≤
∣∣∣ ∫

Rd

(
δv(t, x, y)− δv(t′, x′, y)

)(
Ka(t, x, y)−Ka(0, 0, y)

)
dy
∣∣∣

+
∣∣∣ ∫

Rd
δv(t′, x′, y)

(
Ka(t, x, y)−Ka(t′, x′, y)

)
dy
∣∣∣

=: I + II.

Then we estimate I and II separately. First, similar to (3.8), I is less than∫
Bl

∣∣∣(δv(t, x, y)− δv(t′, x′, y)
)(
Ka(t, x, y)−Ka(0, 0, y)

)∣∣∣ dy
+

∫
Rd\Bl

∣∣∣(δv(t, x, y)− δv(t′, x′, y)
)(
Ka(t, x, y)−Ka(0, 0, y)

)∣∣∣ dy := I1 + I2.

Applying (3.6), we have

I1 ≤ C[v]1+α/σ,α+σ;Q5/4

∫
Bl

lα+σ−2|y|2
(
Ka(t, x, y)−Ka(0, 0, y)

)
dy

≤ AC[v]1+α/σ,α+σl
α+σ−2

(
|x|α + |t|α/σ

) ∫
Bl

|y|2|y|−d−σ dy

= CAlα[v]1+α/σ,α+σ.

For I2, we have

I2 ≤ C[v]1+α/σ,α+σl

∫
Rd\Bl

|y|σ+α−1
∣∣Ka(t, x, y)−Ka(0, 0, y)

∣∣ dy
≤ CA[v]1+α/σ,α+σl

α
(
|x|α + |t|α/σ

)
≤ CAlα[v]1+α/σ,α+σ.

Next, we bound

II ≤
∫
Rd\B1

(
[v]α/σ,α|y|α + ‖Dv‖L∞ |y|

)∣∣Ka(t, x, y)−Ka(t′, x′, y)
∣∣ dy

+

∫
B1

‖D2v‖L∞ |y|2
∣∣Ka(t, x, y)−Ka(t′, x′, y)

∣∣ dy
≤ CAlα

(
[v]α/σ,α + ‖Dv‖∞ + ‖D2v‖L∞

)
.

Combining the estimates of I, II, and the interpolation inequality, we get

|ga(t, x)− ga(t′, x′)| ≤ CAlα
(
[v]1+α/σ,α+σ + [v]α/σ,α

)
,

so we obtain (4.20).
Estimates of ha: For simplicity of notation, we denote

ξ(t, x, y) =
(
η(t, x)− η(t, x+ y)

)
u(t, x+ y) + yTDη(t, x)u(t, x). (4.22)
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By the Leibniz rule, we have

ξ(t, x, y) = yT
∫ 1

0

(
Dη(t, x)u(t, x)−Dη(t, x+ sy)u(t, x+ y)

)
ds

= −
∫ 1

0

∫ 1

0

(
u(t, x)syTD2η(t, x+ s′sy)y

+ yTDη(t, x+ sy)yTDu(t, x+ s′y)
)
ds′ ds, (4.23)

which implies that when |y| ≤ 1/8,

|ξ(t, x, y)| ≤ C|y|2
(
‖u‖L∞(Q11/8) + ‖Du‖L∞(Q11/8)

)
. (4.24)

On the other hand, clearly when |y| ≥ 1/8,

|ξ(t, x, y)| ≤ C
(
‖u‖L∞((−1,0)×Rd) + |y|‖u‖L∞(Q1)

)
. (4.25)

Note that∣∣ha(t, x)− ha(t′, x′)
∣∣ ≤ ∫

Rd

∣∣ξ(t, x, y)− ξ(t′, x′, y)
∣∣Ka(t, x, y) dy

+

∫
Rd
|ξ(t′, x′, y)|

∣∣Ka(t, x, y)−Ka(t′, x′, y)
∣∣ dy =: III + IV. (4.26)

Estimate of III: By (4.23) when |y| ≤ 1/8, we have∣∣ξ(t, x, y)− ξ(t′, x′, y)
∣∣

=

∫ 1

0

∫ 1

0

s
(
u(t′, x′)yTD2η(t′, x′ + ss′y)y − u(t, x)yTD2η(t, x+ ss′y)y

)
dx ds′

+

∫ 1

0

∫ 1

0

[
yTDη(t′, x′ + sy)yTDu(t′, x′ + s′y)

− yTDη(t, x+ sy)yTDu(t, x+ s′y)
]
ds ds′

≤ C|y|2lα
(
[u]α/σ,α;Q1

+ ‖u‖L∞(Q1)

)
+ C|y|2l

(
‖D2u‖L∞(Q11/8) + ‖Du‖L∞(Q11/8)

)
≤ C|y|2lα

(
‖u‖L∞(Q11/8) + ‖D2u‖L∞(Q11/8)

)
,

where we used the interpolation inequalities in the last inequality. On the other
hand, when |y| > 1/8,∣∣yTDη(t, x)u(t, x)− yTDη(t′, x′)u(t′, x′)

∣∣ ≤ |y|lα‖u‖α/σ,α;Q1

and ∣∣(η(t, x)− η(t, x+ y))u(t, x+ y)− (η(t′, x′)− η(t′, x′ + y))u(t′, x′ + y)
∣∣

=
∣∣u(t, x+ y)

(
η(t, x)− η(t′, x′)− η(t, x+ y) + η(t′, x′ + y)

)
+
(
η(t′, x′)− η(t′, x′ + y)

)(
u(t, x+ y)− u(t′, x′ + y)

)∣∣
≤ C(l‖u‖L∞((−1,0)×Rd) + lα‖u‖α/σ,α;(−1,0)×Rd),

which imply that when |y| > 1/8,∣∣ξ(t, x, y)− ξ(t′, x′, y)
∣∣

≤ C
(
l‖u‖L∞((−1,0)×Rd) + lα‖u‖α/σ,α;(−1,0)×Rd

)
+ C|y|lα‖u‖α/σ,α;Q1

.
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Now with the above estimates, we obtain

III ≤
∫
B1/8

C|y|2lα
(
‖u‖L∞(Q11/8) + ‖D2u‖L∞(Q11/8)

)
Ka(t, x, y) dy

+ Clα‖u‖α/σ,α;Q1

∫
Bc

1/8

|y|Ka(t, x, y) dy

+ C
(
l‖u‖L∞((−1,0)×Rd) + lα‖u‖α/σ,α;(−1,0)×Rd

) ∫
Bc

1/8

Ka(t, x, y) dy

≤ Clα
(
‖D2u‖L∞(Q11/8) + ‖u‖α/σ,α;(−(11/8)σ,0)×Rd

)
.

Estimate of IV: By (4.24) and (4.25), we have

IV ≤ ClαA
(
‖u‖L∞((−(11/8)σ,0)×Rd) + ‖Du‖L∞(Q11/8)

)
.

The estimates of III and IV with the interpolation inequalities give (4.21). The
lemma is proved. �

Proof of Theorem 1.1. We apply Theorem 4.1 to v with the estimates of ga and ha
in Lemma 4.5 to obtain

[v]1+α/σ,α+σ;Q1/2
≤ C

(
[v]1+α′/σ,α′+σ +A[v]1+α/σ,α+σ +A[v]α/σ,α

+ (A+ 1)(‖u‖α/σ,α;(−(11/8)σ,0)×Rd + ‖D2u‖L∞(Q11/8)) + sup
a

[ηfa]α/σ,α;Q1

)
.

Since η ≡ 1 in Q1 and has compact support in (−(5/4)σ, (5/4)σ)×B5/4, we get

[u]1+α/σ,α+σ;Q1/2
≤ C

(
[u]1+α′/σ,α′+σ;Q5/4

+ C0 +A[u]1+α/σ,α+σ;Q5/4

+ (A+ 1)(‖u‖α/σ,α;(−(11/8)σ,0)×Rd + ‖D2u‖L∞(Q11/8))
)
. (4.27)

Now we use a scaling argument. For any ε > 0, set û(t, x) := ε−σu(εσt, εx). Since
u satisfies (1.5), we have

ût(t, x) = inf
a

{∫
Rd
δû(t, x, y)Kε

a(t, x, y) dy + fa(εσt, εx)
}

in Q1/ε,

where

Kε
a(t, x, y) = εd+σKa(εσt, εx, εy).

Clearly, ∣∣Kε
a(t, x, y)−Kε

a(t′, x′, y)
∣∣ ≤ Aεα(|x− x′|α + |t− t′|α/σ

) Λ

|y|d+σ
.

Then we apply (4.27) to û and get

[û]1+α/σ,α+σ;Q1/2
≤ C

(
[û]1+α′/σ,α+σ;Q5/4

+ C0ε
α +Aεα[û]1+α/σ,α+σ;Q5/4

+ (Aεα + 1)
(
‖û‖α/σ,α;(−(11/8)σ,0)×Rd + ‖D2û‖L∞(Q11/8)

))
.

Returning back to u, we have

[u]1+α/σ,σ+α;Qε/2 ≤ C
(
εα
′−α[u]1+α′/σ,α′+σ;Q5ε/4

+ C0 +Aεα[u]1+α/σ,α+σ;Q5ε/4

+ (Aεα + 1)
(
ε−σ−α‖u‖α/σ,α;(−(11ε/8)σ,0)×Rd + ε2−σ−α‖D2u‖L∞(Q11ε/8)

))
.



28 H. DONG AND H. ZHANG

By a translation of the coordinates, the inequality above holds for any (t, x) ∈ Q1

for sufficiently small ε > 0

[u]1+α/σ,σ+α;Qε/2(t,x)

≤ C
(
εα
′−α[u]1+α′/σ,α′+σ;Q5ε/4(t,x) + C0 +Aεα[u]1+α/σ,α+σ;Q5ε/4(t,x)

+ (Aεα + 1)
(
ε−σ−α‖u‖α/σ,α;(t−(11ε/8)σ,t)×Rd + ε2−σ−α‖D2u‖L∞(Q11ε/8(t,x))

))
.

(4.28)

Let Qk be defined in (4.1). It is obvious that Qk monotonically increases to Q1.
Then for any (t, x), (s, y) ∈ Qk such that t ≥ s, we set l := max(|t− s|1/σ, |x− y|).
When l ≥ ε/2,

|D2u(t, x)−D2u(s, y)|
lσ+α−2

+
|ut(t, x)− ut(s, y)|

lσ+α−2

≤ 2σ+α−1ε2−σ−α(‖ut‖L∞(Qk) + ‖D2u‖L∞(Qk)

)
;

when l < ε/2,

|D2u(t, x)−D2u(s, y)|
lσ+α−2

+
|ut(t, x)− ut(s, y)|

lσ+α−2
≤ 2[u]1+α/σ,α+σ;Qε/2(t,x).

Now we choose ε = 2−k−2 so that for any (t, x) ∈ Qk, Q11ε/8(t, x) ⊂ Qk+1 and
(t − (11ε/8)σ, t) ⊂ (−1, 0). Combining the two inequalities above with (4.28), we
obtain

[u]1+α/σ,α+σ;Qk ≤ 2(k+3)(σ+α−2)+1(‖ut‖L∞(Qk) + ‖D2u‖L∞(Qk))

+ C
(

2(k+2)(α−α′)[u]1+α′/σ,α′+σ;Qk+1 + C0 + 2−(k+2)αA[u]1+α/σ,α+σ;Qk+1

+ (2−(k+2)αA+ 1)
(
2(k+2)(σ+α)‖u‖α/σ,α;(−1,0)×Rd

+ 2(k+2)(σ+α−2)‖D2u‖L∞(Qk+1)

))
. (4.29)

By the interpolation inequalities

[u]1+α′/σ,α′+σ;Qk+1 ≤ 2−2(k+2)(α−α′)[u]1+α/σ,α+σ;Qk+1 + C22(k+2)(σ+α′)‖u‖L∞ ,
‖D2u‖L∞(Qk+1) + ‖ut‖L∞(Qk+1)

≤ 2−2(k+1)(σ+α−2)[u]1+α/σ,α+σ;Qk+1 + C24(k+1)‖u‖L∞(Qk+1),

we reorganize the right-hand side of (4.29) to get

[u]1+α/σ,α+σ;Qk ≤ C
((

2−(k+1)(σ+α−2) + 2−(k+2)(α−α′))[u]1+α/σ,α+σ;Qk+1

+ 25k(σ+α)‖u‖α/σ,α;(−1,0)×Rd + C0

)
,

where C depends on A. Obviously, σ+α < 3 and there exists a constant k0 depends
on d, σ, α, λ,Λ, and A such that Q1/2 ⊂ Qk0 and for any k ≥ k0,

C
(
2−(k+1)(σ+α−2) + 2−2(k+1)(α−α′)) < 2−16.

Therefore, we have for any k ≥ k0,

[u]1+α/σ,α+σ;Qk ≤ 2−16[u]1+α/σ,α+σ;Qk+1 + C215k‖u‖α/σ,α + CC0.
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We multiply both sides above by 2−16(k−k0) and then sum from k = k0 to infinity
and obtain that

[u]1+α/σ,α+σ;Qk0 ≤ C215k0‖u‖α/σ,α;(−1,0)×Rd + CC0.

In particular,

[u]1+α/σ,α+σ;Q1/2
≤ C(‖u‖α/σ,α;(−1,0)×Rd + C0).

The proof is completed. �

4.3. An improved estimate. By a more careful analysis, we obtain the following
corollary when the kernels depend only on y.

Corollary 4.6. Let σ ∈ (0, 2) and 0 < λ ≤ Λ. Assume that for any a ∈ A, Ka only
depends on y. There is a constant α̂ ∈ (0, 1) depending on d, σ, λ, and Λ so that the
following holds. Let α ∈ (0, α̂). Suppose u ∈ C1+α/σ,σ+α(Q1)∩Cα/σ,α((−1, 0)×Rd)
is a solution of

ut = inf
a∈A

(Lau+ fa) in Q1.

Then,

[u]1+α/σ,α+σ,Q1/2

≤ C‖u‖α/σ,α;(−1,0)×B2
+ C

∞∑
j=1

2−jσ[u]α/σ,α;(−1,0)×(B2j+1\B2j ) + CC0, (4.30)

where C0 = supa[fa]α/σ,α;Q1
.

Proof. Since the proof is quite similar to the proof of Theorem 1.1, we only provide
a sketch here. By a standard scaling and covering argument, we may assume that
u ∈ C1+α/σ,σ+α(Q2)∩Cα/σ,α((−2, 0)×Rd) and the equation is satisfied in Q2. Let
η be a cutoff function such that η ∈ C∞0 ((−2σ, 2σ) × B2) and η ≡ 1 in Q5/4. Let
v = ηu, which satisfies

vt = inf
a

(Lav + ha + ηfa + ηtu),

where

ha =

∫
Rd
ξ(t, x, y)Ka(y) dy

and ξ is defined in (4.22). It is sufficient to estimate [ha]α/σ,α;Q1
. Since Ka only

depends on y, it follows that

|ha(t, x)− ha(t′, x′)| = III,

where III is defined in (4.26). The estimate is similar to the one in the proof of
Lemma 4.5. For any (t, x), (t′, x′) ∈ Q1, since η ≡ 1 in Q5/4, Dη(t, x) = Dη(t′, x′) =
0. When |y| ≤ 1/4, ξ(t, x, y) = 0; When |y| > 1/4, we have∣∣ξ(t, x, y)− ξ(t′, x′, y)

∣∣
=
∣∣(η(t, x)− η(t, x+ y))u(t, x+ y) + yTDη(t, x)u(t, x)

− (η(t′, x′)− η(t′, x′ + y))u(t′, x′ + y) + yTDη(t′, x′)u(t′, x′)
∣∣

≤
∣∣η(t, x+ y)u(t, x+ y)− η(t′, x′ + y)u(t′, x′ + y)

∣∣+
∣∣u(t, x+ y)− u(t′, x′ + y)

∣∣.
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Therefore,

III =

∫
Bc

1/4

∣∣ξ(t, x, y)− ξ(t′, x′, y)
∣∣Ka(y) dy

≤ Clα‖u‖α/σ,α;(−1,0)×B2
+

∫
Bc

1/4

∣∣u(t, x+ y)− u(t′, x′ + y)
∣∣Ka(y) dy

≤ Clα‖u‖α/σ,α;(−1,0)×B2
+

∞∑
j=−1

∫
B2j \B2j−1

|u(t, x+ y)− u(t′, x′ + y)|Ka(y) dy

≤ Clα‖u‖α/σ,α;(−1,0)×B2
+ Clα

∞∑
j=−1

2−jσ[u]α/σ,α;(−1,0)×B2j+1

≤ Clα
(
‖u‖α/σ,α;(−1,0)×B2

+

∞∑
j=1

2−jσ[u]α/σ,α;(−1,0)×(B2j \B2j−1 )

)
,

which implies that

[ha]α/σ,α;Q1
≤ C

(
‖u‖α/σ,α;(−1,0)×B2

+

∞∑
j=1

2−jσ[u]α/σ,α;(−1,0)×(B2j \B2j−1 )

)
.

Then we apply Theorem 1.1 to v and obtain

[v]1+α/σ,σ+α;Q1/2
≤ C

(
‖v‖α/σ,α;(−1,0)×Rd + ‖u‖α/σ,α;(−1,0)×B2

+

∞∑
j=1

2−jσ[u]α/σ,α;(−1,0)×(B2j \B2j−1 ) + C0

)
.

Combining the fact that η ≡ 1 in Q5/4, we reach (4.30). Therefore, the proof is
completed. �

5. Equations with bounded inhomogeneous terms

In this section, we present an application of Corollary 4.6 to nonlocal parabolic
equations with merely bounded nonhomogeneous terms:

ut = inf
a∈A

(Lau+ fa), (5.1)

where supa ‖fa‖L∞ <∞ and

Lau(x) =

∫
Rd
δu(t, x, y)Ka(y) dy.

Before proving Theorem 1.2, we first show an interpolation inequality involving the
Zygmund semi-norm.

Lemma 5.1. Let α ∈ (0, 1) and u ∈ Λ1((−1, 0)) ∩ L∞((−1, 0)). Then we have
u ∈ Cα((−1, 0)) and

[u]α;(−1,0) ≤ C‖u‖L∞((−1,0)) + C[u]Λ1((−1,0)), (5.2)

where C depends only on α.

Proof. By mollification, it suffices to prove (5.2) assuming that u ∈ Cα((−1, 0)).
Let x, y ∈ (−1, 0), y < x, and h := x− y. When h > 1/3,

|u(x)− u(y)|
hα

≤ 2 · 3α‖u‖L∞((−1,0)).
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When h < 1/3, either x < −1/3 or y > −2/3. If x < −1/3, then 2x − y ∈ (x, 0)
and

|u(x)− u(y)|
hα

≤ 1

2

|u(2x− y) + u(y)− 2u(x)|
hα

+
1

2

|u(2x− y)− u(y)|
hα

≤ 3α−1

2
[u]Λ1((−1,0)) +

1

21−α [u]α;(−1,0).

The case when y > −2/3 is similar. Therefore,

[u]α;(−1,0) ≤ 2 · 3α‖u‖L∞((−1,0)) +
1

21−α [u]α;(−1,0) +
3α−1

2
[u]Λ1((−1,0)),

which yields (5.2). �

In the lemma below, we prove that the Zygmund norm of the odd extension of a
function is bounded by its original Zygmund norm. It is well known that the same
result holds if we replace the Zygmund norm by any Hölder norm.

Lemma 5.2. Assume that u ∈ Λ1((−∞, 0]) and u(0) = 0. Let ũ be the odd
extension of u. Then

[ũ]Λ1(R) ≤ 3[u]Λ1((−∞,0)).

Proof. By the definition, we need to estimate

h−1
∣∣ũ(x+ h) + ũ(x− h)− 2ũ(x)

∣∣, (5.3)

where h > 0. Clearly, when x + h, x, x − h ∈ (−∞, 0), or x + h, x − h, x ∈ (0,∞),
(5.3) is bounded by [u]Λ1(−∞,0). Since ũ is the odd extension of u, when x = 0
ũ(h) + ũ(−h) = 0. It remains to consider the case that these x + h > 0 and
x, x− h < 0, or x+ h, x > 0 and x− h < 0. Without loss of generality, we assume
that x+ h > 0 and x, x− h < 0, which implies x ∈ (−h, 0). Then

ũ(x+ h) + ũ(x− h)− 2ũ(x) = −u(−x− h) + u(x− h)− 2u(x)

= (u(−x− h) + u(x− h)− 2u(−h))− 2(u(−x− h) + u(x)− 2u(−h/2))

+ 2(u(−h) + u(0)− 2u(−h/2))

≤ [u]Λ1(−∞,0)(|x|+ 2|x+ h/2|+ 2|h/2|) ≤ 3[u]Λ1(−∞,0)h.

Therefore, the lemma is proved. �

Let η be a smooth even function in R with unit integral and vanishing outside
(−1, 1). For R > 0, we define the mollification of u with respect to t as

u(R)(t, x) =

∫
R
u(t+ s, x)R−ση(sR−σ) ds.

The following lemmas will also be used in our proof.

Lemma 5.3. Let σ ∈ (1, 2), α ∈ (0, 1), and R > 0 be constants. Assume that u
defined on Rd+1 is Cσ in x, Λ1 in t, and Du is C(σ−1)/σ in t. Let p = p(t, x) be
the first-order Taylor expansion of u(R) at the origin. Then for any integer j ≥ 0,
we have

[u− p]∗α;(−Rσ,0)×B2jR

≤ C(2jR)σ−α[u]∗σ + C2(1−α)jRσ−α[Du]tσ−1
σ

+ C2−jαRσ−α[u]tΛ1 (5.4)
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and

[u− p]tα/σ;(−Rσ,0)×B2jR
≤ C2j(σ−α/2)Rσ−α[u]∗σ + C2j(σ+1−α)/2Rσ−α[Du]tσ−1

σ

+ C2j(σ−α/2)Rσ−α[u]tΛ1 , (5.5)

where C > 0 is a constant depending only on d, σ, and α.

Proof. We first estimate the Hölder semi-norm in x. By the interpolation inequality,

[u− p]∗α;(−Rσ,0)×B2jR

≤ (2jR)−α‖u− p‖L∞((−Rσ,0)×B2jR) + (2jR)σ−α[u− p]∗σ;(−Rσ,0)×B2jR
. (5.6)

Because p is linear,

[u− p]∗σ;(−Rσ,0)×B2jR
= [u]∗σ;(−Rσ,0)×B2jR

. (5.7)

Since η is even with unit integral, by Lemma 5.2 we have∣∣u(t, x)− u(R)(t, x)
∣∣

=
∣∣∣ ∫

R

(u(t+ s, x) + u(t− s, x)

2
− u(t, x)

)
R−ση(sR−σ) ds

∣∣∣ ≤ CRσ[u]tΛ1 . (5.8)

Furthermore, for any (t, x) ∈ (−Rσ, 0)×B2jR,∣∣u(R)(t, x)− p(t, x)
∣∣ =

∣∣u(R)(t, x)− u(R)(0, 0)− ∂tu(R)(0, 0)t− xTDu(R)(0, 0)
∣∣

≤
∣∣u(R)(t, x)− u(R)(t, 0)− xTDu(R)(t, 0)

∣∣
+
∣∣u(R)(t, 0)− u(R)(0, 0)− ∂tu(R)(0, 0)t

∣∣+
∣∣xTDu(R)(0, 0)− xTDu(R)(t, 0)

∣∣
≤ (2jR)σ[u]∗σ +R2σ

∥∥∂2
t u

(R)
∥∥
L∞(−Rσ,0)×B2jR

+ C2jRσ
[
Du(R)

]t
σ−1
σ

.

Integrating by part and noting that η′′ is an even function and
∫
η′′ = 0, we obtain∣∣∂2

t u
(R)
∣∣ =

∣∣∣ ∫
R
∂2
t u(t+ s, x)R−ση(sR−σ) ds

∣∣∣
=
∣∣∣ ∫

Rd

(u(t+ s, x) + u(t− s, x)

2
− u(t, x)

)
R−3ση′′(sR−σ) ds

∣∣∣ ≤ CR−σ[u]tΛ1 .

Therefore, combining the two inequalities above, we have∥∥u(R) − p
∥∥
L∞((−Rσ,0)×B2jR)

≤ C(2jR)σ[u]∗σ + C2jRσ[Du]tσ−1
σ

+ CRσ[u]tΛ1 ,

which together with (5.8) implies that

‖u− p‖L∞((−Rσ,0)×B2jR)

≤ C(2jR)σ[u]∗σ + C2jRσ[Du]tσ−1
σ

+ CRσ[u]tΛ1 . (5.9)

We plug (5.7) and (5.9) in (5.6) and get (5.4).
Next we estimate the Hölder semi-norm in t. Obviously,

[u− p]tα/σ;(−Rσ,0)×B2jR
≤ [u− p]tα/σ;(−2jσ/2Rσ,0)×B2jR

.

From Lemma 5.1 and scaling, we have

[u− p]tα/σ;(−2jσ/2Rσ,0)×B2jR

≤ C(2j/2R)−α‖u− p‖L∞((−2jσ/2Rσ,0)×B2jR) + C(2j/2R)σ−α[u− p]tΛ1

≤ C(2j/2R)−α‖u− p‖L∞((−2jσ/2Rσ,0)×B2jR) + C(2j/2R)σ−α[u]tΛ1 .
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We follow (5.9) to estimate

‖u− p‖L∞((−2jσ/2Rσ,0)×B2jR)

≤ ‖u− u(R)‖L∞((−2jσ/2Rσ,0)×B2jR) + ‖u(R) − p‖L∞((−2jσ/2Rσ,0)×B2jR)

≤ CRσ[u]tΛ1 + C(2jR)σ[u]∗σ + C2jσRσ[u]tΛ1 + C2j(σ+1)/2Rσ[Du]tσ−1
σ

.

Therefore, we reach (5.5). The lemma is proved. �

In the sequel, we set

[u]tΛ1 := [u]t
Λ1(Rd+1

0 )
, [u]∗σ := [u]∗

σ;Rd+1
0

, and [Du]tσ−1
σ

=: [Du]tσ−1
σ ;Rd+1

0

.

Define P0 to be the set of first-order polynomials of t, and P1 to be the set of
first-order polynomials of t, x.

Lemma 5.4. (i) When σ ∈ (0, 1), we have

[u]tΛ1 + [u]∗σ ≤ C sup
r>0

sup
(t,x)∈Rd+1

0

r−σ inf
p∈P0

‖u− p‖L∞(Qr(t,x)),

where C > 0 is a constant depending only on d and σ.
(ii) When σ ∈ (1, 2), we have

[u]tΛ1 + [u]∗σ + [Du]tσ−1
σ

≤ C sup
r>0

sup
(t,x)∈Rd+1

0

r−σ inf
p∈P1

‖u− p‖L∞(Qr(t,x)),

where C > 0 is a constant depending only on d and σ.

Proof. The estimates of [u]∗σ and [Du]tσ−1
σ

are standard. See, for instance, [18,

Section 3.3]. We only consider [u]tΛ1 . For any polynomial p which is linear in t, by
the triangle inequality,∣∣u(t+ s, x) + u(t− s, x)− 2u(t, x)

∣∣
=
∣∣u(t+ s, x)− p(t+ s, x) + u(t− s, x)− p(t− s, x)− 2(u(t, x)− p(t, x))

∣∣
≤ 4‖u− p‖L∞(Qr(t+s,x)),

where rσ = 2s. Since p is arbitrary, the inequality above implies that∣∣u(t+ s, x) + u(t− s, x)− 2u(t, x)
∣∣ ≤ 8sr−σ inf

p
‖u− p‖L∞(Qr(t+s,x)).

The lemma is proved. �

Proof of Theorem 1.2. We only treat the case when σ > 1. For the case when
σ < 1, the proof is almost the same with minor modifications.

We extend u to {t > 0} by defining

u(t, x) = 2u(0, x)− u(−t, x) for t > 0

By Lemma 5.2,

[u]tΛ1(Rd+1) ≤ C[u]tΛ1 .

Let α̂ be the constant in Corollary 4.6 and α ∈ (0, α̂). Let R > 0 be a constant
and p be defined as in Lemma 5.3. Let K ≥ 2‖u− p‖L∞(Q2R) be a constant to be

specified later and denote gK = max
(

min(u − p,K),−K
)
. Clearly, gK ∈ Cα/σ,α

and any Cα/σ,α norm (or semi-norm) of gK is less than or equal to that of u− p.
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Let vK be the solution to{
∂tvK = infa(LavK) in Q2R,

vK = gK in Rd+1
0 \Q2R.

(5.10)

The solvability follows from Theorem 1.1 and a regularization argument; see [2, 23].
We apply Corollary 4.6 to vK with a scaling to get

[vK ]1+α/σ,α+σ;QR/2

≤ C
(
R−α−σ‖vK‖L∞((−Rσ,0)×B2R) +R−σ[vK ]α/σ,α;(−Rσ,0)×B2R

+

∞∑
j=2

2−jσR−σ[vK ]α/σ,α;(−Rσ,0)×(B2jR\B2j−1R)

)
≤ C

(
R−α−σ‖vK‖L∞((−Rσ,0)×B2R) +R−σ[vK ]α/σ,α;(−Rσ,0)×B2R

+

∞∑
j=2

2−jσR−σ[u− p]α/σ,α;(−Rσ,0)×(B2jR\B2j−1R)

)
. (5.11)

where in the last equality we used the fact that vK = gK in (−(2R)σ, 0)×Bc2R and
the Hölder norm of gK is less than the Hölder norm of u− p.

By Lemma 5.3,

[u− p]α/σ,α;(−Rσ,0)×B2jR
≤ C2j(σ−α/2)Rσ−α[u]tΛ1

+ C2j(σ−α/2)Rσ−α[u]∗σ + C2j(σ+1−α)/2Rσ−α[Du]tσ−1
σ

, (5.12)

which together with (5.11) gives

[vK ]1+α/σ,α+σ;QR/2

≤ C
(
R−α−σ‖vK‖L∞((−Rσ,0)×B2R) +R−σ[vK ]α/σ,α;(−Rσ,0)×B2R

+R−α[u]tΛ1 +R−α[u]∗σ +R−α[Du]tσ−1
σ

)
. (5.13)

Next we estimate wK := gK − vK , which is equal to u − p − vK in Q2R by the
choice of K. By (5.1) and (5.10), wK satisfies

∂twK ≤M+wK + hK + supa∈A ‖fa‖L∞ in Q2R,

∂twK ≥M−wK + ĥK − supa∈A ‖fa‖L∞ in Q2R,

wK = 0 in Rd+1
0 \Q2R,

where

hK :=M+(u− p− gK), ĥK :=M−(u− p− gK).

By the dominated convergence theorem, it is not hard to see that

‖hK‖L∞(Q2R), ‖ĥK‖L∞(Q2R) → 0 as K →∞.
We then fix K large enough so that

‖hK‖L∞(Q2R) + ‖ĥK‖L∞(Q2R) ≤ sup
a∈A
‖fa‖L∞ .

From Lemma 2.5, we have

‖wK‖L∞(Q2R) ≤ CRσ sup
a∈A
‖fa‖L∞ , [wK ]α/σ,α;Q2R

≤ CRσ−α sup
a∈A
‖fa‖L∞ , (5.14)

where C depends on d, σ, λ, and Λ.
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Now let qK be the first-order Taylor expansion of vK at the origin. Then by
(5.13), for any r ∈ (0, R/2),

‖u− p− qK‖L∞(Qr) ≤ ‖u− p− vK‖L∞(Qr) + ‖vK − qK‖L∞(Qr)

≤ ‖u− p− vK‖L∞(Qr) + C(r/R)σ+α‖vK‖L∞((−Rσ,0)×B2R))

+ Crσ+αR−σ[vK ]α/σ,α;(−Rσ,0)×B2R) + Crσ+αR−α
(
[u]tΛ1 + [u]∗σ + [Du]tσ−1

σ

)
.

(5.15)

Since vK = u− p+ wK in Q2R, we plug (5.9) and (5.12) with j = 0, and (5.14) to
(5.15) and obtain

‖u− p− qK‖L∞(Qr) ≤ CRσ sup
a∈A
‖fa‖L∞ + Crσ+αR−α

(
[u]tΛ1 + [u]∗σ + [Du]tσ−1

σ

)
.

Dividing both sides of the inequality above by rσ, we have

r−σ‖u− p− qK‖L∞(Qr)

≤ C(R/r)σ sup
a∈A
‖fa‖L∞ + C(r/R)α

(
[u]tΛ1 + [u]∗σ + [Du]tσ−1

σ

)
.

Set r = R/M , where M ≥ 2 is a constant to be determined. Note that the center

of the cylinder can be replaced by any point (t, x) in Rd+1
0 , i.e.,

r−σ‖u− p− qK‖L∞(Qr(t,x))

≤ CMσ sup
a∈A
‖fa‖L∞ + CM−α

(
[u]tΛ1 + [u]∗σ + [Du]tσ−1

σ

)
,

which together with Lemma 5.4 implies

[u]tΛ1 + [u]∗σ + [Du]tσ−1
σ

≤ C sup
r>0

sup
(t,x)∈Rd+1

0

r−σ inf
p∈P1

‖u− p‖L∞(Qr(t,x))

≤ CMσ sup
a∈A
‖fa‖L∞ + CM−α

(
[u]tΛ1 + [u]∗σ + [Du]tσ−1

σ

)
. (5.16)

By taking M sufficiently large in (5.16) so that CM−α < 1/2, we obtain

[u]tΛ1 + [u]∗σ + [Du]tσ−1
σ

≤ CMσ sup
a∈A
‖fa‖L∞ .

The theorem is proved. �

The proof of Corollary of 1.3 is similar to that of Theorem 1.1, and thus omitted.

appendix

In the appendix, we provide a sketch of the proof of Corollary 2.2.

Proof. By a scaling argument, we assume that r = 1. Let k ≥ 1 be a constant to

be determined later. Set δ̂ = δ/k. Let (t0, x0) ∈ Qδ/2 be such that u(t0, x0) =

infQδ/2 u. Since σ ∈ (1,∞), we have 2−σ ≤ 1 − 4−σ. By a scaling and translation

of the coordinates, we apply Proposition 2.1 to u in Qδ̂(t0, x0) and obtain

δ̂−(σ+d)/ε‖u‖Lε(Q̂1) ≤ C1

(
inf

Qδ̂(t0,x0)
u+ Cδ̂σ

)
,
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where Q̂1 = Qδ̂(t1, x0) and t1 = t0 − (4σ − 1)δ̂σ. For any x1 ∈ Bδ̂/2(x0),

‖u‖Lε(Q̂1) ≥ ‖u‖Lε((t1−δσ,t1)×Bδ̂/2(x1))

≥ C2δ̂
(σ+d)/ε inf

(t1−δσ,t1)×Bδ̂/2(x1)
u ≥ C2δ̂

(σ+d)/ε inf
Qδ̂(t1,x1)

u,

where C2 > 0 depending only on d. Therefore,

inf
Qδ̂(t1,x1)

u ≤ C1/C2

(
inf

Qδ̂(t0,x0)
u+ Cδ̂σ

)
.

Applying Proposition 2.1 again, we have

δ̂−(σ+d)/ε‖u‖Lε(Q̂2) ≤ C1

(
inf

Qδ̂(t1,x1)
u+ Cδ̂σ

)
,

where Q̂2 = Qδ̂(t2, x1) and t2 = t0 − 2(4σ − 1)δ̂σ, and for any x2 ∈ Bδ̂/2(x1),

inf
Qδ̂(t2,x2)

u ≤ C1/C2

(
inf

Qδ̂(t1,x1)
u+ Cδ̂σ

)
.

By induction, or any xn−1 ∈ B(n−1)δ̂/2(x0) ∩B1,

δ̂−(σ+d)/ε‖u‖Lε(Q̂n) ≤ C3

(
inf

Qδ̂(t0,x0)
u+ Cδ̂σ

)
≤ C3

(
u(t0, x0) + Cδ̂σ

)
= C3

(
inf
Qδ/2

u+ Cδ̂σ
)
,

where Q̂n = Qδ̂(tn, xn−1), tn = t0 − n(4σ − 1)δ̂σ, and C3 is a constant depending
only on λ, Λ, d, and n. Notice that |x0| ≤ δ/2, t0 ∈ [−(δ/2)σ, 0], and σ > 1.
We can choose k ≥ 1 in a suitable range depending only on σ and δ, and then

n ≤ [2k/δ] + 1, such that Q̂n runs through (−δσ,−δσ + (4σ − 1)δ̂σ)×B1. Finally,
by applying Proposition 2.1 again and using a simple covering argument, we prove
the corollary. �
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